Spaces:
Running
Running
| # Copyright (c) 2022 Phil Wang | |
| # Copyright (c) 2023 Anas Awadalla, Irena Gao, Joshua Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe, Yonatan Bitton, Samir Gadre, Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel Ilharco, Mitchell Wortsman, Ludwig Schmidt. | |
| # Copyright (c) 2023 Tencent AI Lab | |
| # Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
| # This file has been modified by Bytedance Ltd. and/or its affiliates on September 15, 2025. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # Original file (IP-Adapter) was released under Apache License 2.0, with the full license text | |
| # available at https://github.com/tencent-ailab/IP-Adapter/blob/main/LICENSE. | |
| # Original file (open_flamingo and flamingo-pytorch) was released under MIT License: | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy | |
| # of this software and associated documentation files (the "Software"), to deal | |
| # in the Software without restriction, including without limitation the rights | |
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| # copies of the Software, and to permit persons to whom the Software is | |
| # furnished to do so, subject to the following conditions: | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| # SOFTWARE. | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| # FFN | |
| def FeedForward(dim, mult=4): | |
| inner_dim = int(dim * mult) | |
| return nn.Sequential( | |
| nn.LayerNorm(dim), | |
| nn.Linear(dim, inner_dim, bias=False), | |
| nn.GELU(), | |
| nn.Linear(inner_dim, dim, bias=False), | |
| ) | |
| def reshape_tensor(x, heads): | |
| bs, length, width = x.shape | |
| #(bs, length, width) --> (bs, length, n_heads, dim_per_head) | |
| x = x.view(bs, length, heads, -1) | |
| # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) | |
| x = x.transpose(1, 2) | |
| # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) | |
| x = x.reshape(bs, heads, length, -1) | |
| return x | |
| class PerceiverAttention(nn.Module): | |
| def __init__(self, *, dim, dim_head=64, heads=8): | |
| super().__init__() | |
| self.scale = dim_head**-0.5 | |
| self.dim_head = dim_head | |
| self.heads = heads | |
| inner_dim = dim_head * heads | |
| self.norm1 = nn.LayerNorm(dim) | |
| self.norm2 = nn.LayerNorm(dim) | |
| self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
| self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
| def forward(self, x, latents): | |
| """ | |
| Args: | |
| x (torch.Tensor): image features | |
| shape (b, n1, D) | |
| latent (torch.Tensor): latent features | |
| shape (b, n2, D) | |
| """ | |
| x = self.norm1(x) | |
| latents = self.norm2(latents) | |
| b, l, _ = latents.shape | |
| q = self.to_q(latents) | |
| kv_input = torch.cat((x, latents), dim=-2) | |
| k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
| q = reshape_tensor(q, self.heads) | |
| k = reshape_tensor(k, self.heads) | |
| v = reshape_tensor(v, self.heads) | |
| # attention | |
| scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
| weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards | |
| weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
| out = weight @ v | |
| out = out.permute(0, 2, 1, 3).reshape(b, l, -1) | |
| return self.to_out(out) | |
| class Resampler(nn.Module): | |
| def __init__( | |
| self, | |
| dim=1024, | |
| depth=8, | |
| dim_head=64, | |
| heads=16, | |
| num_queries=8, | |
| embedding_dim=768, | |
| output_dim=1024, | |
| ff_mult=4, | |
| max_seq_len: int = 257, # CLIP tokens + CLS token | |
| apply_pos_emb: bool = False, | |
| num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None | |
| self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) | |
| self.proj_in = nn.Linear(embedding_dim, dim) | |
| self.proj_out = nn.Linear(dim, output_dim) | |
| self.norm_out = nn.LayerNorm(output_dim) | |
| self.to_latents_from_mean_pooled_seq = ( | |
| nn.Sequential( | |
| nn.LayerNorm(dim), | |
| nn.Linear(dim, dim * num_latents_mean_pooled), | |
| Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled), | |
| ) | |
| if num_latents_mean_pooled > 0 | |
| else None | |
| ) | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append( | |
| nn.ModuleList( | |
| [ | |
| PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
| FeedForward(dim=dim, mult=ff_mult), | |
| ] | |
| ) | |
| ) | |
| self.pretrained = kwargs.pop("pretrained", None) | |
| self.freeze = kwargs.pop("freeze", False) | |
| self.skip_last_layer = kwargs.pop("skip_last_layer", False) | |
| if self.freeze and self.pretrained is None: | |
| raise ValueError("Trying to freeze the model but no pretrained provided!") | |
| def forward(self, x): | |
| if self.pos_emb is not None: | |
| n, device = x.shape[1], x.device | |
| pos_emb = self.pos_emb(torch.arange(n, device=device)) | |
| x = x + pos_emb | |
| latents = self.latents.repeat(x.size(0), 1, 1) | |
| x = self.proj_in(x) | |
| if self.to_latents_from_mean_pooled_seq: | |
| meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool)) | |
| meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq) | |
| latents = torch.cat((meanpooled_latents, latents), dim=-2) | |
| for attn, ff in self.layers: | |
| latents = attn(x, latents) + latents | |
| latents = ff(latents) + latents | |
| latents = self.proj_out(latents) | |
| return self.norm_out(latents) | |