Spaces:
Running
Running
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import logging | |
| from mmgp import offload | |
| import torch | |
| import torch.cuda.amp as amp | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange | |
| __all__ = [ | |
| 'WanVAE', | |
| ] | |
| CACHE_T = 2 | |
| class CausalConv3d(nn.Conv3d): | |
| """ | |
| Causal 3d convolusion. | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self._padding = (self.padding[2], self.padding[2], self.padding[1], | |
| self.padding[1], 2 * self.padding[0], 0) | |
| self.padding = (0, 0, 0) | |
| def forward(self, x, cache_x=None): | |
| padding = list(self._padding) | |
| if cache_x is not None and self._padding[4] > 0: | |
| cache_x = cache_x.to(x.device) | |
| x = torch.cat([cache_x, x], dim=2) | |
| padding[4] -= cache_x.shape[2] | |
| cache_x = None | |
| x = F.pad(x, padding) | |
| try: | |
| out = super().forward(x) | |
| return out | |
| except RuntimeError as e: | |
| if "miopenStatus" in str(e): | |
| print("⚠️ MIOpen fallback: AMD gets upset when trying to work with large areas, and so CPU will be " | |
| "used for this decoding (which is very slow). Consider using tiled VAE Decoding.") | |
| x_cpu = x.float().cpu() | |
| weight_cpu = self.weight.float().cpu() | |
| bias_cpu = self.bias.float().cpu() if self.bias is not None else None | |
| print(f"[Fallback] x shape: {x_cpu.shape}, weight shape: {weight_cpu.shape}") | |
| out = F.conv3d(x_cpu, weight_cpu, bias_cpu, | |
| self.stride, (0, 0, 0), # avoid double padding here | |
| self.dilation, self.groups) | |
| out = out.to(x.device) | |
| if x.dtype in (torch.float16, torch.bfloat16): | |
| out = out.half() | |
| if x.dtype != out.dtype: | |
| out = out.to(x.dtype) | |
| return out | |
| raise | |
| class RMS_norm(nn.Module): | |
| def __init__(self, dim, channel_first=True, images=True, bias=False): | |
| super().__init__() | |
| broadcastable_dims = (1, 1, 1) if not images else (1, 1) | |
| shape = (dim, *broadcastable_dims) if channel_first else (dim,) | |
| self.channel_first = channel_first | |
| self.scale = dim**0.5 | |
| self.gamma = nn.Parameter(torch.ones(shape)) | |
| self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0. | |
| def forward(self, x): | |
| dtype = x.dtype | |
| x = F.normalize( | |
| x, dim=(1 if self.channel_first else | |
| -1)) * self.scale * self.gamma + self.bias | |
| x = x.to(dtype) | |
| return x | |
| class Upsample(nn.Upsample): | |
| def forward(self, x): | |
| """ | |
| Fix bfloat16 support for nearest neighbor interpolation. | |
| """ | |
| return super().forward(x.float()).type_as(x) | |
| class Resample(nn.Module): | |
| def __init__(self, dim, mode): | |
| assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d', | |
| 'downsample3d') | |
| super().__init__() | |
| self.dim = dim | |
| self.mode = mode | |
| # layers | |
| if mode == 'upsample2d': | |
| self.resample = nn.Sequential( | |
| Upsample(scale_factor=(2., 2.), mode='nearest-exact'), | |
| nn.Conv2d(dim, dim // 2, 3, padding=1)) | |
| elif mode == 'upsample3d': | |
| self.resample = nn.Sequential( | |
| Upsample(scale_factor=(2., 2.), mode='nearest-exact'), | |
| nn.Conv2d(dim, dim // 2, 3, padding=1)) | |
| self.time_conv = CausalConv3d( | |
| dim, dim * 2, (3, 1, 1), padding=(1, 0, 0)) | |
| elif mode == 'downsample2d': | |
| self.resample = nn.Sequential( | |
| nn.ZeroPad2d((0, 1, 0, 1)), | |
| nn.Conv2d(dim, dim, 3, stride=(2, 2))) | |
| elif mode == 'downsample3d': | |
| self.resample = nn.Sequential( | |
| nn.ZeroPad2d((0, 1, 0, 1)), | |
| nn.Conv2d(dim, dim, 3, stride=(2, 2))) | |
| self.time_conv = CausalConv3d( | |
| dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)) | |
| else: | |
| self.resample = nn.Identity() | |
| def forward(self, x, feat_cache=None, feat_idx=[0]): | |
| b, c, t, h, w = x.size() | |
| if self.mode == 'upsample3d': | |
| if feat_cache is not None: | |
| idx = feat_idx[0] | |
| if feat_cache[idx] is None: | |
| feat_cache[idx] = 'Rep' | |
| feat_idx[0] += 1 | |
| else: | |
| clone = True | |
| cache_x = x[:, :, -CACHE_T:, :, :]#.clone() | |
| if cache_x.shape[2] < 2 and feat_cache[ | |
| idx] is not None and feat_cache[idx] != 'Rep': | |
| # cache last frame of last two chunk | |
| clone = False | |
| cache_x = torch.cat([ | |
| feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
| cache_x.device), cache_x | |
| ], | |
| dim=2) | |
| if cache_x.shape[2] < 2 and feat_cache[ | |
| idx] is not None and feat_cache[idx] == 'Rep': | |
| clone = False | |
| cache_x = torch.cat([ | |
| torch.zeros_like(cache_x).to(cache_x.device), | |
| cache_x | |
| ], | |
| dim=2) | |
| if clone: | |
| cache_x = cache_x.clone() | |
| if feat_cache[idx] == 'Rep': | |
| x = self.time_conv(x) | |
| else: | |
| x = self.time_conv(x, feat_cache[idx]) | |
| feat_cache[idx] = cache_x | |
| feat_idx[0] += 1 | |
| x = x.reshape(b, 2, c, t, h, w) | |
| x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), | |
| 3) | |
| x = x.reshape(b, c, t * 2, h, w) | |
| t = x.shape[2] | |
| x = rearrange(x, 'b c t h w -> (b t) c h w') | |
| x = self.resample(x) | |
| x = rearrange(x, '(b t) c h w -> b c t h w', t=t) | |
| if self.mode == 'downsample3d': | |
| if feat_cache is not None: | |
| idx = feat_idx[0] | |
| if feat_cache[idx] is None: | |
| feat_cache[idx] = x #.to("cpu") #x.clone() yyyy | |
| feat_idx[0] += 1 | |
| else: | |
| cache_x = x[:, :, -1:, :, :].clone() | |
| # if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep': | |
| # # cache last frame of last two chunk | |
| # cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) | |
| x = self.time_conv( | |
| torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2)) | |
| feat_cache[idx] = cache_x#.to("cpu") #yyyyy | |
| feat_idx[0] += 1 | |
| return x | |
| def init_weight(self, conv): | |
| conv_weight = conv.weight | |
| nn.init.zeros_(conv_weight) | |
| c1, c2, t, h, w = conv_weight.size() | |
| one_matrix = torch.eye(c1, c2) | |
| init_matrix = one_matrix | |
| nn.init.zeros_(conv_weight) | |
| #conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5 | |
| conv_weight.data[:, :, 1, 0, 0] = init_matrix #* 0.5 | |
| conv.weight.data.copy_(conv_weight) | |
| nn.init.zeros_(conv.bias.data) | |
| def init_weight2(self, conv): | |
| conv_weight = conv.weight.data | |
| nn.init.zeros_(conv_weight) | |
| c1, c2, t, h, w = conv_weight.size() | |
| init_matrix = torch.eye(c1 // 2, c2) | |
| #init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2) | |
| conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix | |
| conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix | |
| conv.weight.data.copy_(conv_weight) | |
| nn.init.zeros_(conv.bias.data) | |
| class ResidualBlock(nn.Module): | |
| def __init__(self, in_dim, out_dim, dropout=0.0): | |
| super().__init__() | |
| self.in_dim = in_dim | |
| self.out_dim = out_dim | |
| # layers | |
| self.residual = nn.Sequential( | |
| RMS_norm(in_dim, images=False), nn.SiLU(), | |
| CausalConv3d(in_dim, out_dim, 3, padding=1), | |
| RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout), | |
| CausalConv3d(out_dim, out_dim, 3, padding=1)) | |
| self.shortcut = CausalConv3d(in_dim, out_dim, 1) \ | |
| if in_dim != out_dim else nn.Identity() | |
| def forward(self, x, feat_cache=None, feat_idx=[0]): | |
| h = self.shortcut(x) | |
| dtype = x.dtype | |
| for layer in self.residual: | |
| if isinstance(layer, CausalConv3d) and feat_cache is not None: | |
| idx = feat_idx[0] | |
| cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
| if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
| # cache last frame of last two chunk | |
| cache_x = torch.cat([ | |
| feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
| cache_x.device), cache_x | |
| ], | |
| dim=2) | |
| x = layer(x, feat_cache[idx]).to(dtype) | |
| feat_cache[idx] = cache_x#.to("cpu") | |
| feat_idx[0] += 1 | |
| else: | |
| x = layer(x).to(dtype) | |
| return x + h | |
| class AttentionBlock(nn.Module): | |
| """ | |
| Causal self-attention with a single head. | |
| """ | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.dim = dim | |
| # layers | |
| self.norm = RMS_norm(dim) | |
| self.to_qkv = nn.Conv2d(dim, dim * 3, 1) | |
| self.proj = nn.Conv2d(dim, dim, 1) | |
| # zero out the last layer params | |
| nn.init.zeros_(self.proj.weight) | |
| def forward(self, x): | |
| identity = x | |
| b, c, t, h, w = x.size() | |
| x = rearrange(x, 'b c t h w -> (b t) c h w') | |
| x = self.norm(x) | |
| # compute query, key, value | |
| q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, | |
| -1).permute(0, 1, 3, | |
| 2).contiguous().chunk( | |
| 3, dim=-1) | |
| # apply attention | |
| x = F.scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| ) | |
| x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w) | |
| # output | |
| x = self.proj(x) | |
| x = rearrange(x, '(b t) c h w-> b c t h w', t=t) | |
| return x + identity | |
| class Encoder3d(nn.Module): | |
| def __init__(self, | |
| dim=128, | |
| z_dim=4, | |
| dim_mult=[1, 2, 4, 4], | |
| num_res_blocks=2, | |
| attn_scales=[], | |
| temperal_downsample=[True, True, False], | |
| dropout=0.0): | |
| super().__init__() | |
| self.dim = dim | |
| self.z_dim = z_dim | |
| self.dim_mult = dim_mult | |
| self.num_res_blocks = num_res_blocks | |
| self.attn_scales = attn_scales | |
| self.temperal_downsample = temperal_downsample | |
| # dimensions | |
| dims = [dim * u for u in [1] + dim_mult] | |
| scale = 1.0 | |
| # init block | |
| self.conv1 = CausalConv3d(3, dims[0], 3, padding=1) | |
| # downsample blocks | |
| downsamples = [] | |
| for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): | |
| # residual (+attention) blocks | |
| for _ in range(num_res_blocks): | |
| downsamples.append(ResidualBlock(in_dim, out_dim, dropout)) | |
| if scale in attn_scales: | |
| downsamples.append(AttentionBlock(out_dim)) | |
| in_dim = out_dim | |
| # downsample block | |
| if i != len(dim_mult) - 1: | |
| mode = 'downsample3d' if temperal_downsample[ | |
| i] else 'downsample2d' | |
| downsamples.append(Resample(out_dim, mode=mode)) | |
| scale /= 2.0 | |
| self.downsamples = nn.Sequential(*downsamples) | |
| # middle blocks | |
| self.middle = nn.Sequential( | |
| ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim), | |
| ResidualBlock(out_dim, out_dim, dropout)) | |
| # output blocks | |
| self.head = nn.Sequential( | |
| RMS_norm(out_dim, images=False), nn.SiLU(), | |
| CausalConv3d(out_dim, z_dim, 3, padding=1)) | |
| def forward(self, x, feat_cache=None, feat_idx=[0]): | |
| dtype = x.dtype | |
| if feat_cache is not None: | |
| idx = feat_idx[0] | |
| cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
| if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
| # cache last frame of last two chunk | |
| cache_x = torch.cat([ | |
| feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
| cache_x.device), cache_x | |
| ], | |
| dim=2) | |
| x = self.conv1(x, feat_cache[idx]).to(dtype) | |
| feat_cache[idx] = cache_x | |
| del cache_x | |
| feat_idx[0] += 1 | |
| else: | |
| x = self.conv1(x) | |
| ## downsamples | |
| for layer in self.downsamples: | |
| if feat_cache is not None: | |
| x = layer(x, feat_cache, feat_idx) | |
| else: | |
| x = layer(x) | |
| ## middle | |
| for layer in self.middle: | |
| if isinstance(layer, ResidualBlock) and feat_cache is not None: | |
| x = layer(x, feat_cache, feat_idx) | |
| else: | |
| x = layer(x) | |
| ## head | |
| for layer in self.head: | |
| if isinstance(layer, CausalConv3d) and feat_cache is not None: | |
| idx = feat_idx[0] | |
| cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
| if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
| # cache last frame of last two chunk | |
| cache_x = torch.cat([ | |
| feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
| cache_x.device), cache_x | |
| ], | |
| dim=2) | |
| x = layer(x, feat_cache[idx]) | |
| feat_cache[idx] = cache_x | |
| del cache_x | |
| feat_idx[0] += 1 | |
| else: | |
| x = layer(x) | |
| return x | |
| class Decoder3d(nn.Module): | |
| def __init__(self, | |
| dim=128, | |
| z_dim=4, | |
| dim_mult=[1, 2, 4, 4], | |
| num_res_blocks=2, | |
| attn_scales=[], | |
| temperal_upsample=[False, True, True], | |
| dropout=0.0): | |
| super().__init__() | |
| self.dim = dim | |
| self.z_dim = z_dim | |
| self.dim_mult = dim_mult | |
| self.num_res_blocks = num_res_blocks | |
| self.attn_scales = attn_scales | |
| self.temperal_upsample = temperal_upsample | |
| # dimensions | |
| dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] | |
| scale = 1.0 / 2**(len(dim_mult) - 2) | |
| # init block | |
| self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1) | |
| # middle blocks | |
| self.middle = nn.Sequential( | |
| ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]), | |
| ResidualBlock(dims[0], dims[0], dropout)) | |
| # upsample blocks | |
| upsamples = [] | |
| for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): | |
| # residual (+attention) blocks | |
| if i == 1 or i == 2 or i == 3: | |
| in_dim = in_dim // 2 | |
| for _ in range(num_res_blocks + 1): | |
| upsamples.append(ResidualBlock(in_dim, out_dim, dropout)) | |
| if scale in attn_scales: | |
| upsamples.append(AttentionBlock(out_dim)) | |
| in_dim = out_dim | |
| # upsample block | |
| if i != len(dim_mult) - 1: | |
| mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d' | |
| upsamples.append(Resample(out_dim, mode=mode)) | |
| scale *= 2.0 | |
| self.upsamples = nn.Sequential(*upsamples) | |
| # output blocks | |
| self.head = nn.Sequential( | |
| RMS_norm(out_dim, images=False), nn.SiLU(), | |
| CausalConv3d(out_dim, 3, 3, padding=1)) | |
| def forward(self, x, feat_cache=None, feat_idx=[0]): | |
| ## conv1 | |
| if feat_cache is not None: | |
| idx = feat_idx[0] | |
| cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
| if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
| # cache last frame of last two chunk | |
| cache_x = torch.cat([ | |
| feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
| cache_x.device), cache_x | |
| ], | |
| dim=2) | |
| x = self.conv1(x, feat_cache[idx]) | |
| feat_cache[idx] = cache_x#.to("cpu") | |
| del cache_x | |
| feat_idx[0] += 1 | |
| else: | |
| x = self.conv1(x) | |
| cache_x = None | |
| ## middle | |
| for layer in self.middle: | |
| if isinstance(layer, ResidualBlock) and feat_cache is not None: | |
| x = layer(x, feat_cache, feat_idx) | |
| else: | |
| x = layer(x) | |
| ## upsamples | |
| for layer in self.upsamples: | |
| if feat_cache is not None: | |
| x = layer(x, feat_cache, feat_idx) | |
| else: | |
| x = layer(x) | |
| ## head | |
| for layer in self.head: | |
| if isinstance(layer, CausalConv3d) and feat_cache is not None: | |
| idx = feat_idx[0] | |
| cache_x = x[:, :, -CACHE_T:, :, :] .clone() | |
| if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
| # cache last frame of last two chunk | |
| cache_x = torch.cat([ | |
| feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( | |
| cache_x.device), cache_x | |
| ], | |
| dim=2) | |
| x = layer(x, feat_cache[idx]) | |
| feat_cache[idx] = cache_x#.to("cpu") | |
| del cache_x | |
| feat_idx[0] += 1 | |
| else: | |
| x = layer(x) | |
| return x | |
| def count_conv3d(model): | |
| count = 0 | |
| for m in model.modules(): | |
| if isinstance(m, CausalConv3d): | |
| count += 1 | |
| return count | |
| class WanVAE_(nn.Module): | |
| _offload_hooks = ['encode', 'decode'] | |
| def __init__(self, | |
| dim=128, | |
| z_dim=4, | |
| dim_mult=[1, 2, 4, 4], | |
| num_res_blocks=2, | |
| attn_scales=[], | |
| temperal_downsample=[True, True, False], | |
| dropout=0.0): | |
| super().__init__() | |
| self.dim = dim | |
| self.z_dim = z_dim | |
| self.dim_mult = dim_mult | |
| self.num_res_blocks = num_res_blocks | |
| self.attn_scales = attn_scales | |
| self.temperal_downsample = temperal_downsample | |
| self.temperal_upsample = temperal_downsample[::-1] | |
| # modules | |
| self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks, | |
| attn_scales, self.temperal_downsample, dropout) | |
| self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1) | |
| self.conv2 = CausalConv3d(z_dim, z_dim, 1) | |
| self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks, | |
| attn_scales, self.temperal_upsample, dropout) | |
| def forward(self, x): | |
| mu, log_var = self.encode(x) | |
| z = self.reparameterize(mu, log_var) | |
| x_recon = self.decode(z) | |
| return x_recon, mu, log_var | |
| def encode(self, x, scale = None, any_end_frame = False): | |
| self.clear_cache() | |
| ## cache | |
| t = x.shape[2] | |
| if any_end_frame: | |
| iter_ = 2 + (t - 2) // 4 | |
| else: | |
| iter_ = 1 + (t - 1) // 4 | |
| ## 对encode输入的x,按时间拆分为1、4、4、4.... | |
| out_list = [] | |
| for i in range(iter_): | |
| self._enc_conv_idx = [0] | |
| if i == 0: | |
| out_list.append(self.encoder( | |
| x[:, :, :1, :, :], | |
| feat_cache=self._enc_feat_map, | |
| feat_idx=self._enc_conv_idx)) | |
| elif any_end_frame and i== iter_ -1: | |
| out_list.append(self.encoder( | |
| x[:, :, -1:, :, :], | |
| feat_cache= None, | |
| feat_idx=self._enc_conv_idx)) | |
| else: | |
| out_list.append(self.encoder( | |
| x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :], | |
| feat_cache=self._enc_feat_map, | |
| feat_idx=self._enc_conv_idx)) | |
| self.clear_cache() | |
| out = torch.cat(out_list, 2) | |
| out_list = None | |
| mu, log_var = self.conv1(out).chunk(2, dim=1) | |
| if scale != None: | |
| if isinstance(scale[0], torch.Tensor): | |
| mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view( | |
| 1, self.z_dim, 1, 1, 1) | |
| else: | |
| mu = (mu - scale[0]) * scale[1] | |
| return mu | |
| def decode(self, z, scale=None, any_end_frame = False): | |
| self.clear_cache() | |
| # z: [b,c,t,h,w] | |
| if scale != None: | |
| if isinstance(scale[0], torch.Tensor): | |
| z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view( | |
| 1, self.z_dim, 1, 1, 1) | |
| else: | |
| z = z / scale[1] + scale[0] | |
| iter_ = z.shape[2] | |
| x = self.conv2(z) | |
| out_list = [] | |
| for i in range(iter_): | |
| self._conv_idx = [0] | |
| if i == 0: | |
| out_list.append(self.decoder( | |
| x[:, :, i:i + 1, :, :], | |
| feat_cache=self._feat_map, | |
| feat_idx=self._conv_idx)) | |
| elif any_end_frame and i==iter_-1: | |
| out_list.append(self.decoder( | |
| x[:, :, -1:, :, :], | |
| feat_cache=None , | |
| feat_idx=self._conv_idx)) | |
| else: | |
| out_list.append(self.decoder( | |
| x[:, :, i:i + 1, :, :], | |
| feat_cache=self._feat_map, | |
| feat_idx=self._conv_idx)) | |
| self.clear_cache() | |
| out = torch.cat(out_list, 2) | |
| return out | |
| def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
| blend_extent = min(a.shape[-2], b.shape[-2], blend_extent) | |
| for y in range(blend_extent): | |
| b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent) | |
| return b | |
| def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
| blend_extent = min(a.shape[-1], b.shape[-1], blend_extent) | |
| for x in range(blend_extent): | |
| b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent) | |
| return b | |
| def spatial_tiled_decode(self, z, scale, tile_size, any_end_frame= False): | |
| tile_sample_min_size = tile_size | |
| tile_latent_min_size = int(tile_sample_min_size / 8) | |
| tile_overlap_factor = 0.25 | |
| # z: [b,c,t,h,w] | |
| if isinstance(scale[0], torch.Tensor): | |
| z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view( | |
| 1, self.z_dim, 1, 1, 1) | |
| else: | |
| z = z / scale[1] + scale[0] | |
| overlap_size = int(tile_latent_min_size * (1 - tile_overlap_factor)) #8 0.75 | |
| blend_extent = int(tile_sample_min_size * tile_overlap_factor) #256 0.25 | |
| row_limit = tile_sample_min_size - blend_extent | |
| # Split z into overlapping tiles and decode them separately. | |
| # The tiles have an overlap to avoid seams between tiles. | |
| rows = [] | |
| for i in range(0, z.shape[-2], overlap_size): | |
| row = [] | |
| for j in range(0, z.shape[-1], overlap_size): | |
| tile = z[:, :, :, i: i + tile_latent_min_size, j: j + tile_latent_min_size] | |
| decoded = self.decode(tile, any_end_frame= any_end_frame) | |
| row.append(decoded) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :, :row_limit, :row_limit]) | |
| result_rows.append(torch.cat(result_row, dim=-1)) | |
| return torch.cat(result_rows, dim=-2) | |
| def spatial_tiled_encode(self, x, scale, tile_size, any_end_frame = False) : | |
| tile_sample_min_size = tile_size | |
| tile_latent_min_size = int(tile_sample_min_size / 8) | |
| tile_overlap_factor = 0.25 | |
| overlap_size = int(tile_sample_min_size * (1 - tile_overlap_factor)) | |
| blend_extent = int(tile_latent_min_size * tile_overlap_factor) | |
| row_limit = tile_latent_min_size - blend_extent | |
| # Split video into tiles and encode them separately. | |
| rows = [] | |
| for i in range(0, x.shape[-2], overlap_size): | |
| row = [] | |
| for j in range(0, x.shape[-1], overlap_size): | |
| tile = x[:, :, :, i: i + tile_sample_min_size, j: j + tile_sample_min_size] | |
| tile = self.encode(tile, any_end_frame= any_end_frame) | |
| row.append(tile) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :, :row_limit, :row_limit]) | |
| result_rows.append(torch.cat(result_row, dim=-1)) | |
| mu = torch.cat(result_rows, dim=-2) | |
| if isinstance(scale[0], torch.Tensor): | |
| mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view( | |
| 1, self.z_dim, 1, 1, 1) | |
| else: | |
| mu = (mu - scale[0]) * scale[1] | |
| return mu | |
| def reparameterize(self, mu, log_var): | |
| std = torch.exp(0.5 * log_var) | |
| eps = torch.randn_like(std) | |
| return eps * std + mu | |
| def sample(self, imgs, deterministic=False): | |
| mu, log_var = self.encode(imgs) | |
| if deterministic: | |
| return mu | |
| std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0)) | |
| return mu + std * torch.randn_like(std) | |
| def clear_cache(self): | |
| self._conv_num = count_conv3d(self.decoder) | |
| self._conv_idx = [0] | |
| self._feat_map = [None] * self._conv_num | |
| #cache encode | |
| self._enc_conv_num = count_conv3d(self.encoder) | |
| self._enc_conv_idx = [0] | |
| self._enc_feat_map = [None] * self._enc_conv_num | |
| def _video_vae(pretrained_path=None, z_dim=None, device='cpu', **kwargs): | |
| """ | |
| Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL. | |
| """ | |
| # params | |
| cfg = dict( | |
| dim=96, | |
| z_dim=z_dim, | |
| dim_mult=[1, 2, 4, 4], | |
| num_res_blocks=2, | |
| attn_scales=[], | |
| temperal_downsample=[False, True, True], | |
| dropout=0.0) | |
| cfg.update(**kwargs) | |
| # init model | |
| with torch.device('meta'): | |
| model = WanVAE_(**cfg) | |
| from mmgp import offload | |
| # load checkpoint | |
| logging.info(f'loading {pretrained_path}') | |
| # model.load_state_dict( | |
| # torch.load(pretrained_path, map_location=device), assign=True) | |
| # offload.load_model_data(model, pretrained_path.replace(".pth", "_bf16.safetensors"), writable_tensors= False) | |
| offload.load_model_data(model, pretrained_path.replace(".pth", ".safetensors"), writable_tensors= False) | |
| return model | |
| class WanVAE: | |
| def __init__(self, | |
| z_dim=16, | |
| vae_pth='cache/vae_step_411000.pth', | |
| dtype=torch.float, | |
| device="cuda"): | |
| self.dtype = dtype | |
| self.device = device | |
| mean = [ | |
| -0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508, | |
| 0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921 | |
| ] | |
| std = [ | |
| 2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743, | |
| 3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160 | |
| ] | |
| self.mean = torch.tensor(mean, dtype=dtype, device=device) | |
| self.std = torch.tensor(std, dtype=dtype, device=device) | |
| self.scale = [self.mean, 1.0 / self.std] | |
| # init model | |
| self.model = _video_vae( | |
| pretrained_path=vae_pth, | |
| z_dim=z_dim, | |
| ).to(dtype).eval() #.requires_grad_(False).to(device) | |
| self.model._model_dtype = dtype | |
| def get_VAE_tile_size(vae_config, device_mem_capacity, mixed_precision): | |
| # VAE Tiling | |
| if vae_config == 0: | |
| if mixed_precision: | |
| device_mem_capacity = device_mem_capacity / 2 | |
| if device_mem_capacity >= 24000: | |
| use_vae_config = 1 | |
| elif device_mem_capacity >= 8000: | |
| use_vae_config = 2 | |
| else: | |
| use_vae_config = 3 | |
| else: | |
| use_vae_config = vae_config | |
| if use_vae_config == 1: | |
| VAE_tile_size = 0 | |
| elif use_vae_config == 2: | |
| VAE_tile_size = 256 | |
| else: | |
| VAE_tile_size = 128 | |
| return VAE_tile_size | |
| def encode(self, videos, tile_size = 256, any_end_frame = False): | |
| """ | |
| videos: A list of videos each with shape [C, T, H, W]. | |
| """ | |
| scale = [u.to(device = self.device) for u in self.scale] | |
| if tile_size > 0: | |
| return [ self.model.spatial_tiled_encode(u.to(self.dtype).unsqueeze(0), scale, tile_size, any_end_frame=any_end_frame).float().squeeze(0) for u in videos ] | |
| else: | |
| return [ self.model.encode(u.to(self.dtype).unsqueeze(0), scale, any_end_frame=any_end_frame).float().squeeze(0) for u in videos ] | |
| def decode(self, zs, tile_size, any_end_frame = False): | |
| scale = [u.to(device = self.device) for u in self.scale] | |
| if tile_size > 0: | |
| return [ self.model.spatial_tiled_decode(u.to(self.dtype).unsqueeze(0), scale, tile_size, any_end_frame=any_end_frame).clamp_(-1, 1).float().squeeze(0) for u in zs ] | |
| else: | |
| return [ self.model.decode(u.to(self.dtype).unsqueeze(0), scale, any_end_frame=any_end_frame).clamp_(-1, 1).float().squeeze(0) for u in zs ] | |