Spaces:
Running
Running
| # https://github.com/yl4579/StyleTTS2/blob/main/models.py | |
| from .istftnet import AdainResBlk1d | |
| from torch.nn.utils import weight_norm | |
| from transformers import AlbertModel | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class LinearNorm(nn.Module): | |
| def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
| super(LinearNorm, self).__init__() | |
| self.linear_layer = nn.Linear(in_dim, out_dim, bias=bias) | |
| nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init.calculate_gain(w_init_gain)) | |
| def forward(self, x): | |
| return self.linear_layer(x) | |
| class LayerNorm(nn.Module): | |
| def __init__(self, channels, eps=1e-5): | |
| super().__init__() | |
| self.channels = channels | |
| self.eps = eps | |
| self.gamma = nn.Parameter(torch.ones(channels)) | |
| self.beta = nn.Parameter(torch.zeros(channels)) | |
| def forward(self, x): | |
| x = x.transpose(1, -1) | |
| x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
| return x.transpose(1, -1) | |
| class TextEncoder(nn.Module): | |
| def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)): | |
| super().__init__() | |
| self.embedding = nn.Embedding(n_symbols, channels) | |
| padding = (kernel_size - 1) // 2 | |
| self.cnn = nn.ModuleList() | |
| for _ in range(depth): | |
| self.cnn.append(nn.Sequential( | |
| weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)), | |
| LayerNorm(channels), | |
| actv, | |
| nn.Dropout(0.2), | |
| )) | |
| self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True) | |
| def forward(self, x, input_lengths, m): | |
| x = self.embedding(x) # [B, T, emb] | |
| x = x.transpose(1, 2) # [B, emb, T] | |
| m = m.unsqueeze(1) | |
| x.masked_fill_(m, 0.0) | |
| for c in self.cnn: | |
| x = c(x) | |
| x.masked_fill_(m, 0.0) | |
| x = x.transpose(1, 2) # [B, T, chn] | |
| lengths = input_lengths if input_lengths.device == torch.device('cpu') else input_lengths.to('cpu') | |
| x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False) | |
| self.lstm.flatten_parameters() | |
| x, _ = self.lstm(x) | |
| x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True) | |
| x = x.transpose(-1, -2) | |
| x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]], device=x.device) | |
| x_pad[:, :, :x.shape[-1]] = x | |
| x = x_pad | |
| x.masked_fill_(m, 0.0) | |
| return x | |
| class AdaLayerNorm(nn.Module): | |
| def __init__(self, style_dim, channels, eps=1e-5): | |
| super().__init__() | |
| self.channels = channels | |
| self.eps = eps | |
| self.fc = nn.Linear(style_dim, channels*2) | |
| def forward(self, x, s): | |
| x = x.transpose(-1, -2) | |
| x = x.transpose(1, -1) | |
| h = self.fc(s) | |
| h = h.view(h.size(0), h.size(1), 1) | |
| gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
| gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1) | |
| x = F.layer_norm(x, (self.channels,), eps=self.eps) | |
| x = (1 + gamma) * x + beta | |
| return x.transpose(1, -1).transpose(-1, -2) | |
| class ProsodyPredictor(nn.Module): | |
| def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): | |
| super().__init__() | |
| self.text_encoder = DurationEncoder(sty_dim=style_dim, d_model=d_hid,nlayers=nlayers, dropout=dropout) | |
| self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
| self.duration_proj = LinearNorm(d_hid, max_dur) | |
| self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
| self.F0 = nn.ModuleList() | |
| self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
| self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
| self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
| self.N = nn.ModuleList() | |
| self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
| self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
| self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
| self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
| self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
| def forward(self, texts, style, text_lengths, alignment, m): | |
| d = self.text_encoder(texts, style, text_lengths, m) | |
| m = m.unsqueeze(1) | |
| lengths = text_lengths if text_lengths.device == torch.device('cpu') else text_lengths.to('cpu') | |
| x = nn.utils.rnn.pack_padded_sequence(d, lengths, batch_first=True, enforce_sorted=False) | |
| self.lstm.flatten_parameters() | |
| x, _ = self.lstm(x) | |
| x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True) | |
| x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]], device=x.device) | |
| x_pad[:, :x.shape[1], :] = x | |
| x = x_pad | |
| duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=False)) | |
| en = (d.transpose(-1, -2) @ alignment) | |
| return duration.squeeze(-1), en | |
| def F0Ntrain(self, x, s): | |
| x, _ = self.shared(x.transpose(-1, -2)) | |
| F0 = x.transpose(-1, -2) | |
| for block in self.F0: | |
| F0 = block(F0, s) | |
| F0 = self.F0_proj(F0) | |
| N = x.transpose(-1, -2) | |
| for block in self.N: | |
| N = block(N, s) | |
| N = self.N_proj(N) | |
| return F0.squeeze(1), N.squeeze(1) | |
| class DurationEncoder(nn.Module): | |
| def __init__(self, sty_dim, d_model, nlayers, dropout=0.1): | |
| super().__init__() | |
| self.lstms = nn.ModuleList() | |
| for _ in range(nlayers): | |
| self.lstms.append(nn.LSTM(d_model + sty_dim, d_model // 2, num_layers=1, batch_first=True, bidirectional=True, dropout=dropout)) | |
| self.lstms.append(AdaLayerNorm(sty_dim, d_model)) | |
| self.dropout = dropout | |
| self.d_model = d_model | |
| self.sty_dim = sty_dim | |
| def forward(self, x, style, text_lengths, m): | |
| masks = m | |
| x = x.permute(2, 0, 1) | |
| s = style.expand(x.shape[0], x.shape[1], -1) | |
| x = torch.cat([x, s], axis=-1) | |
| x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0) | |
| x = x.transpose(0, 1) | |
| x = x.transpose(-1, -2) | |
| for block in self.lstms: | |
| if isinstance(block, AdaLayerNorm): | |
| x = block(x.transpose(-1, -2), style).transpose(-1, -2) | |
| x = torch.cat([x, s.permute(1, 2, 0)], axis=1) | |
| x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0) | |
| else: | |
| lengths = text_lengths if text_lengths.device == torch.device('cpu') else text_lengths.to('cpu') | |
| x = x.transpose(-1, -2) | |
| x = nn.utils.rnn.pack_padded_sequence( | |
| x, lengths, batch_first=True, enforce_sorted=False) | |
| block.flatten_parameters() | |
| x, _ = block(x) | |
| x, _ = nn.utils.rnn.pad_packed_sequence( | |
| x, batch_first=True) | |
| x = F.dropout(x, p=self.dropout, training=False) | |
| x = x.transpose(-1, -2) | |
| x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]], device=x.device) | |
| x_pad[:, :, :x.shape[-1]] = x | |
| x = x_pad | |
| return x.transpose(-1, -2) | |
| # https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py | |
| class CustomAlbert(AlbertModel): | |
| def forward(self, *args, **kwargs): | |
| outputs = super().forward(*args, **kwargs) | |
| return outputs.last_hidden_state | |