Spaces:
Running
Running
| import os | |
| from einops import rearrange | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange, repeat | |
| from functools import lru_cache | |
| import imageio | |
| import uuid | |
| from tqdm import tqdm | |
| import numpy as np | |
| import subprocess | |
| import soundfile as sf | |
| import torchvision | |
| import binascii | |
| import os.path as osp | |
| from skimage import color | |
| from mmgp.offload import get_cache, clear_caches | |
| VID_EXTENSIONS = (".mp4", ".avi", ".mov", ".mkv") | |
| ASPECT_RATIO_627 = { | |
| '0.26': ([320, 1216], 1), '0.38': ([384, 1024], 1), '0.50': ([448, 896], 1), '0.67': ([512, 768], 1), | |
| '0.82': ([576, 704], 1), '1.00': ([640, 640], 1), '1.22': ([704, 576], 1), '1.50': ([768, 512], 1), | |
| '1.86': ([832, 448], 1), '2.00': ([896, 448], 1), '2.50': ([960, 384], 1), '2.83': ([1088, 384], 1), | |
| '3.60': ([1152, 320], 1), '3.80': ([1216, 320], 1), '4.00': ([1280, 320], 1)} | |
| ASPECT_RATIO_960 = { | |
| '0.22': ([448, 2048], 1), '0.29': ([512, 1792], 1), '0.36': ([576, 1600], 1), '0.45': ([640, 1408], 1), | |
| '0.55': ([704, 1280], 1), '0.63': ([768, 1216], 1), '0.76': ([832, 1088], 1), '0.88': ([896, 1024], 1), | |
| '1.00': ([960, 960], 1), '1.14': ([1024, 896], 1), '1.31': ([1088, 832], 1), '1.50': ([1152, 768], 1), | |
| '1.58': ([1216, 768], 1), '1.82': ([1280, 704], 1), '1.91': ([1344, 704], 1), '2.20': ([1408, 640], 1), | |
| '2.30': ([1472, 640], 1), '2.67': ([1536, 576], 1), '2.89': ([1664, 576], 1), '3.62': ([1856, 512], 1), | |
| '3.75': ([1920, 512], 1)} | |
| def torch_gc(): | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| def split_token_counts_and_frame_ids(T, token_frame, world_size, rank): | |
| S = T * token_frame | |
| split_sizes = [S // world_size + (1 if i < S % world_size else 0) for i in range(world_size)] | |
| start = sum(split_sizes[:rank]) | |
| end = start + split_sizes[rank] | |
| counts = [0] * T | |
| for idx in range(start, end): | |
| t = idx // token_frame | |
| counts[t] += 1 | |
| counts_filtered = [] | |
| frame_ids = [] | |
| for t, c in enumerate(counts): | |
| if c > 0: | |
| counts_filtered.append(c) | |
| frame_ids.append(t) | |
| return counts_filtered, frame_ids | |
| def normalize_and_scale(column, source_range, target_range, epsilon=1e-8): | |
| source_min, source_max = source_range | |
| new_min, new_max = target_range | |
| normalized = (column - source_min) / (source_max - source_min + epsilon) | |
| scaled = normalized * (new_max - new_min) + new_min | |
| return scaled | |
| # @torch.compile | |
| def calculate_x_ref_attn_map_per_head(visual_q, ref_k, ref_target_masks, ref_images_count, attn_bias=None): | |
| dtype = visual_q.dtype | |
| ref_k = ref_k.to(dtype).to(visual_q.device) | |
| scale = 1.0 / visual_q.shape[-1] ** 0.5 | |
| visual_q = visual_q * scale | |
| visual_q = visual_q.transpose(1, 2) | |
| ref_k = ref_k.transpose(1, 2) | |
| visual_q_shape = visual_q.shape | |
| visual_q = visual_q.view(-1, visual_q_shape[-1] ) | |
| number_chunks = visual_q_shape[-2]*ref_k.shape[-2] / 53090100 * 2 | |
| chunk_size = int(visual_q_shape[-2] / number_chunks) | |
| chunks =torch.split(visual_q, chunk_size) | |
| maps_lists = [ [] for _ in ref_target_masks] | |
| for q_chunk in chunks: | |
| attn = q_chunk @ ref_k.transpose(-2, -1) | |
| x_ref_attn_map_source = attn.softmax(-1) # B, H, x_seqlens, ref_seqlens | |
| del attn | |
| ref_target_masks = ref_target_masks.to(dtype) | |
| x_ref_attn_map_source = x_ref_attn_map_source.to(dtype) | |
| for class_idx, ref_target_mask in enumerate(ref_target_masks): | |
| ref_target_mask = ref_target_mask[None, None, None, ...] | |
| x_ref_attnmap = x_ref_attn_map_source * ref_target_mask | |
| x_ref_attnmap = x_ref_attnmap.sum(-1) / ref_target_mask.sum() # B, H, x_seqlens, ref_seqlens --> B, H, x_seqlens | |
| maps_lists[class_idx].append(x_ref_attnmap) | |
| del x_ref_attn_map_source | |
| x_ref_attn_maps = [] | |
| for class_idx, maps_list in enumerate(maps_lists): | |
| attn_map_fuse = torch.concat(maps_list, dim= -1) | |
| attn_map_fuse = attn_map_fuse.view(1, visual_q_shape[1], -1).squeeze(1) | |
| x_ref_attn_maps.append( attn_map_fuse ) | |
| return torch.concat(x_ref_attn_maps, dim=0) | |
| def calculate_x_ref_attn_map(visual_q, ref_k, ref_target_masks, ref_images_count): | |
| dtype = visual_q.dtype | |
| ref_k = ref_k.to(dtype).to(visual_q.device) | |
| scale = 1.0 / visual_q.shape[-1] ** 0.5 | |
| visual_q = visual_q * scale | |
| visual_q = visual_q.transpose(1, 2) | |
| ref_k = ref_k.transpose(1, 2) | |
| attn = visual_q @ ref_k.transpose(-2, -1) | |
| x_ref_attn_map_source = attn.softmax(-1) # B, H, x_seqlens, ref_seqlens | |
| del attn | |
| x_ref_attn_maps = [] | |
| ref_target_masks = ref_target_masks.to(dtype) | |
| x_ref_attn_map_source = x_ref_attn_map_source.to(dtype) | |
| for class_idx, ref_target_mask in enumerate(ref_target_masks): | |
| ref_target_mask = ref_target_mask[None, None, None, ...] | |
| x_ref_attnmap = x_ref_attn_map_source * ref_target_mask | |
| x_ref_attnmap = x_ref_attnmap.sum(-1) / ref_target_mask.sum() # B, H, x_seqlens, ref_seqlens --> B, H, x_seqlens | |
| x_ref_attnmap = x_ref_attnmap.permute(0, 2, 1) # B, x_seqlens, H | |
| x_ref_attnmap = x_ref_attnmap.mean(-1) # B, x_seqlens (mean of heads) | |
| x_ref_attn_maps.append(x_ref_attnmap) | |
| del x_ref_attn_map_source | |
| return torch.concat(x_ref_attn_maps, dim=0) | |
| def get_attn_map_with_target(visual_q, ref_k, shape, ref_target_masks=None, split_num=10, ref_images_count = 0): | |
| """Args: | |
| query (torch.tensor): B M H K | |
| key (torch.tensor): B M H K | |
| shape (tuple): (N_t, N_h, N_w) | |
| ref_target_masks: [B, N_h * N_w] | |
| """ | |
| N_t, N_h, N_w = shape | |
| x_seqlens = N_h * N_w | |
| if x_seqlens <= 1508: | |
| split_num = 10 # 540p | |
| else: | |
| split_num = 20 if x_seqlens <= 3600 else 40 # 720p / 1080p | |
| ref_k = ref_k[:, :x_seqlens] | |
| if ref_images_count > 0 : | |
| visual_q_shape = visual_q.shape | |
| visual_q = visual_q.reshape(visual_q_shape[0], N_t, -1) | |
| visual_q = visual_q[:, ref_images_count:] | |
| visual_q = visual_q.reshape(visual_q_shape[0], -1, *visual_q_shape[-2:]) | |
| _, seq_lens, heads, _ = visual_q.shape | |
| class_num, _ = ref_target_masks.shape | |
| x_ref_attn_maps = torch.zeros(class_num, seq_lens, dtype=visual_q.dtype, device=visual_q.device) | |
| split_chunk = heads // split_num | |
| if split_chunk == 1: | |
| for i in range(split_num): | |
| x_ref_attn_maps_perhead = calculate_x_ref_attn_map_per_head(visual_q[:, :, i:(i+1), :], ref_k[:, :, i:(i+1), :], ref_target_masks, ref_images_count) | |
| x_ref_attn_maps += x_ref_attn_maps_perhead | |
| else: | |
| for i in range(split_num): | |
| x_ref_attn_maps_perhead = calculate_x_ref_attn_map(visual_q[:, :, i*split_chunk:(i+1)*split_chunk, :], ref_k[:, :, i*split_chunk:(i+1)*split_chunk, :], ref_target_masks, ref_images_count) | |
| x_ref_attn_maps += x_ref_attn_maps_perhead | |
| x_ref_attn_maps /= split_num | |
| return x_ref_attn_maps | |
| def rotate_half(x): | |
| x = rearrange(x, "... (d r) -> ... d r", r=2) | |
| x1, x2 = x.unbind(dim=-1) | |
| x = torch.stack((-x2, x1), dim=-1) | |
| return rearrange(x, "... d r -> ... (d r)") | |
| class RotaryPositionalEmbedding1D(nn.Module): | |
| def __init__(self, | |
| head_dim, | |
| ): | |
| super().__init__() | |
| self.head_dim = head_dim | |
| self.base = 10000 | |
| def precompute_freqs_cis_1d(self, pos_indices): | |
| freqs = 1.0 / (self.base ** (torch.arange(0, self.head_dim, 2)[: (self.head_dim // 2)].float() / self.head_dim)) | |
| freqs = freqs.to(pos_indices.device) | |
| freqs = torch.einsum("..., f -> ... f", pos_indices.float(), freqs) | |
| freqs = repeat(freqs, "... n -> ... (n r)", r=2) | |
| return freqs | |
| def forward(self, qlist, pos_indices, cache_entry = None): | |
| """1D RoPE. | |
| Args: | |
| query (torch.tensor): [B, head, seq, head_dim] | |
| pos_indices (torch.tensor): [seq,] | |
| Returns: | |
| query with the same shape as input. | |
| """ | |
| xq= qlist[0] | |
| qlist.clear() | |
| cache = get_cache("multitalk_rope") | |
| freqs_cis= cache.get(cache_entry, None) | |
| if freqs_cis is None: | |
| freqs_cis = cache[cache_entry] = self.precompute_freqs_cis_1d(pos_indices) | |
| cos, sin = freqs_cis.cos().unsqueeze(0).unsqueeze(0), freqs_cis.sin().unsqueeze(0).unsqueeze(0) | |
| # cos, sin = rearrange(cos, 'n d -> 1 1 n d'), rearrange(sin, 'n d -> 1 1 n d') | |
| # real * cos - imag * sin | |
| # imag * cos + real * sin | |
| xq_dtype = xq.dtype | |
| xq_out = xq.to(torch.float) | |
| xq = None | |
| xq_rot = rotate_half(xq_out) | |
| xq_out *= cos | |
| xq_rot *= sin | |
| xq_out += xq_rot | |
| del xq_rot | |
| xq_out = xq_out.to(xq_dtype) | |
| return xq_out | |
| def rand_name(length=8, suffix=''): | |
| name = binascii.b2a_hex(os.urandom(length)).decode('utf-8') | |
| if suffix: | |
| if not suffix.startswith('.'): | |
| suffix = '.' + suffix | |
| name += suffix | |
| return name | |
| def cache_video(tensor, | |
| save_file=None, | |
| fps=30, | |
| suffix='.mp4', | |
| nrow=8, | |
| normalize=True, | |
| value_range=(-1, 1), | |
| retry=5): | |
| # cache file | |
| cache_file = osp.join('/tmp', rand_name( | |
| suffix=suffix)) if save_file is None else save_file | |
| # save to cache | |
| error = None | |
| for _ in range(retry): | |
| # preprocess | |
| tensor = tensor.clamp(min(value_range), max(value_range)) | |
| tensor = torch.stack([ | |
| torchvision.utils.make_grid( | |
| u, nrow=nrow, normalize=normalize, value_range=value_range) | |
| for u in tensor.unbind(2) | |
| ], | |
| dim=1).permute(1, 2, 3, 0) | |
| tensor = (tensor * 255).type(torch.uint8).cpu() | |
| # write video | |
| writer = imageio.get_writer(cache_file, fps=fps, codec='libx264', quality=10, ffmpeg_params=["-crf", "10"]) | |
| for frame in tensor.numpy(): | |
| writer.append_data(frame) | |
| writer.close() | |
| return cache_file | |
| def save_video_ffmpeg(gen_video_samples, save_path, vocal_audio_list, fps=25, quality=5, high_quality_save=False): | |
| def save_video(frames, save_path, fps, quality=9, ffmpeg_params=None): | |
| writer = imageio.get_writer( | |
| save_path, fps=fps, quality=quality, ffmpeg_params=ffmpeg_params | |
| ) | |
| for frame in tqdm(frames, desc="Saving video"): | |
| frame = np.array(frame) | |
| writer.append_data(frame) | |
| writer.close() | |
| save_path_tmp = save_path + "-temp.mp4" | |
| if high_quality_save: | |
| cache_video( | |
| tensor=gen_video_samples.unsqueeze(0), | |
| save_file=save_path_tmp, | |
| fps=fps, | |
| nrow=1, | |
| normalize=True, | |
| value_range=(-1, 1) | |
| ) | |
| else: | |
| video_audio = (gen_video_samples+1)/2 # C T H W | |
| video_audio = video_audio.permute(1, 2, 3, 0).cpu().numpy() | |
| video_audio = np.clip(video_audio * 255, 0, 255).astype(np.uint8) # to [0, 255] | |
| save_video(video_audio, save_path_tmp, fps=fps, quality=quality) | |
| # crop audio according to video length | |
| _, T, _, _ = gen_video_samples.shape | |
| duration = T / fps | |
| save_path_crop_audio = save_path + "-cropaudio.wav" | |
| final_command = [ | |
| "ffmpeg", | |
| "-i", | |
| vocal_audio_list[0], | |
| "-t", | |
| f'{duration}', | |
| save_path_crop_audio, | |
| ] | |
| subprocess.run(final_command, check=True) | |
| save_path = save_path + ".mp4" | |
| if high_quality_save: | |
| final_command = [ | |
| "ffmpeg", | |
| "-y", | |
| "-i", save_path_tmp, | |
| "-i", save_path_crop_audio, | |
| "-c:v", "libx264", | |
| "-crf", "0", | |
| "-preset", "veryslow", | |
| "-c:a", "aac", | |
| "-shortest", | |
| save_path, | |
| ] | |
| subprocess.run(final_command, check=True) | |
| os.remove(save_path_tmp) | |
| os.remove(save_path_crop_audio) | |
| else: | |
| final_command = [ | |
| "ffmpeg", | |
| "-y", | |
| "-i", | |
| save_path_tmp, | |
| "-i", | |
| save_path_crop_audio, | |
| "-c:v", | |
| "libx264", | |
| "-c:a", | |
| "aac", | |
| "-shortest", | |
| save_path, | |
| ] | |
| subprocess.run(final_command, check=True) | |
| os.remove(save_path_tmp) | |
| os.remove(save_path_crop_audio) | |
| class MomentumBuffer: | |
| def __init__(self, momentum: float): | |
| self.momentum = momentum | |
| self.running_average = 0 | |
| def update(self, update_value: torch.Tensor): | |
| new_average = self.momentum * self.running_average | |
| self.running_average = update_value + new_average | |
| def project( | |
| v0: torch.Tensor, # [B, C, T, H, W] | |
| v1: torch.Tensor, # [B, C, T, H, W] | |
| ): | |
| dtype = v0.dtype | |
| v0, v1 = v0.double(), v1.double() | |
| v1 = torch.nn.functional.normalize(v1, dim=[-1, -2, -3, -4]) | |
| v0_parallel = (v0 * v1).sum(dim=[-1, -2, -3, -4], keepdim=True) * v1 | |
| v0_orthogonal = v0 - v0_parallel | |
| return v0_parallel.to(dtype), v0_orthogonal.to(dtype) | |
| def adaptive_projected_guidance( | |
| diff: torch.Tensor, # [B, C, T, H, W] | |
| pred_cond: torch.Tensor, # [B, C, T, H, W] | |
| momentum_buffer: MomentumBuffer = None, | |
| eta: float = 0.0, | |
| norm_threshold: float = 55, | |
| ): | |
| if momentum_buffer is not None: | |
| momentum_buffer.update(diff) | |
| diff = momentum_buffer.running_average | |
| if norm_threshold > 0: | |
| ones = torch.ones_like(diff) | |
| diff_norm = diff.norm(p=2, dim=[-1, -2, -3, -4], keepdim=True) | |
| print(f"diff_norm: {diff_norm}") | |
| scale_factor = torch.minimum(ones, norm_threshold / diff_norm) | |
| diff = diff * scale_factor | |
| diff_parallel, diff_orthogonal = project(diff, pred_cond) | |
| normalized_update = diff_orthogonal + eta * diff_parallel | |
| return normalized_update | |
| def match_and_blend_colors(source_chunk: torch.Tensor, reference_image: torch.Tensor, strength: float) -> torch.Tensor: | |
| """ | |
| Matches the color of a source video chunk to a reference image and blends with the original. | |
| Args: | |
| source_chunk (torch.Tensor): The video chunk to be color-corrected (B, C, T, H, W) in range [-1, 1]. | |
| Assumes B=1 (batch size of 1). | |
| reference_image (torch.Tensor): The reference image (B, C, 1, H, W) in range [-1, 1]. | |
| Assumes B=1 and T=1 (single reference frame). | |
| strength (float): The strength of the color correction (0.0 to 1.0). | |
| 0.0 means no correction, 1.0 means full correction. | |
| Returns: | |
| torch.Tensor: The color-corrected and blended video chunk. | |
| """ | |
| # print(f"[match_and_blend_colors] Input source_chunk shape: {source_chunk.shape}, reference_image shape: {reference_image.shape}, strength: {strength}") | |
| if strength == 0.0: | |
| # print(f"[match_and_blend_colors] Strength is 0, returning original source_chunk.") | |
| return source_chunk | |
| if not 0.0 <= strength <= 1.0: | |
| raise ValueError(f"Strength must be between 0.0 and 1.0, got {strength}") | |
| device = source_chunk.device | |
| dtype = source_chunk.dtype | |
| # Squeeze batch dimension, permute to T, H, W, C for skimage | |
| # Source: (1, C, T, H, W) -> (T, H, W, C) | |
| source_np = source_chunk.squeeze(0).permute(1, 2, 3, 0).cpu().numpy() | |
| # Reference: (1, C, 1, H, W) -> (H, W, C) | |
| ref_np = reference_image.squeeze(0).squeeze(1).permute(1, 2, 0).cpu().numpy() # Squeeze T dimension as well | |
| # Normalize from [-1, 1] to [0, 1] for skimage | |
| source_np_01 = (source_np + 1.0) / 2.0 | |
| ref_np_01 = (ref_np + 1.0) / 2.0 | |
| # Clip to ensure values are strictly in [0, 1] after potential float precision issues | |
| source_np_01 = np.clip(source_np_01, 0.0, 1.0) | |
| ref_np_01 = np.clip(ref_np_01, 0.0, 1.0) | |
| # Convert reference to Lab | |
| try: | |
| ref_lab = color.rgb2lab(ref_np_01) | |
| except ValueError as e: | |
| # Handle potential errors if image data is not valid for conversion | |
| print(f"Warning: Could not convert reference image to Lab: {e}. Skipping color correction for this chunk.") | |
| return source_chunk | |
| corrected_frames_np_01 = [] | |
| for i in range(source_np_01.shape[0]): # Iterate over time (T) | |
| source_frame_rgb_01 = source_np_01[i] | |
| try: | |
| source_lab = color.rgb2lab(source_frame_rgb_01) | |
| except ValueError as e: | |
| print(f"Warning: Could not convert source frame {i} to Lab: {e}. Using original frame.") | |
| corrected_frames_np_01.append(source_frame_rgb_01) | |
| continue | |
| corrected_lab_frame = source_lab.copy() | |
| # Perform color transfer for L, a, b channels | |
| for j in range(3): # L, a, b | |
| mean_src, std_src = source_lab[:, :, j].mean(), source_lab[:, :, j].std() | |
| mean_ref, std_ref = ref_lab[:, :, j].mean(), ref_lab[:, :, j].std() | |
| # Avoid division by zero if std_src is 0 | |
| if std_src == 0: | |
| # If source channel has no variation, keep it as is, but shift by reference mean | |
| # This case is debatable, could also just copy source or target mean. | |
| # Shifting by target mean helps if source is flat but target isn't. | |
| corrected_lab_frame[:, :, j] = mean_ref | |
| else: | |
| corrected_lab_frame[:, :, j] = (corrected_lab_frame[:, :, j] - mean_src) * (std_ref / std_src) + mean_ref | |
| try: | |
| fully_corrected_frame_rgb_01 = color.lab2rgb(corrected_lab_frame) | |
| except ValueError as e: | |
| print(f"Warning: Could not convert corrected frame {i} back to RGB: {e}. Using original frame.") | |
| corrected_frames_np_01.append(source_frame_rgb_01) | |
| continue | |
| # Clip again after lab2rgb as it can go slightly out of [0,1] | |
| fully_corrected_frame_rgb_01 = np.clip(fully_corrected_frame_rgb_01, 0.0, 1.0) | |
| # Blend with original source frame (in [0,1] RGB) | |
| blended_frame_rgb_01 = (1 - strength) * source_frame_rgb_01 + strength * fully_corrected_frame_rgb_01 | |
| corrected_frames_np_01.append(blended_frame_rgb_01) | |
| corrected_chunk_np_01 = np.stack(corrected_frames_np_01, axis=0) | |
| # Convert back to [-1, 1] | |
| corrected_chunk_np_minus1_1 = (corrected_chunk_np_01 * 2.0) - 1.0 | |
| # Permute back to (C, T, H, W), add batch dim, and convert to original torch.Tensor type and device | |
| # (T, H, W, C) -> (C, T, H, W) | |
| corrected_chunk_tensor = torch.from_numpy(corrected_chunk_np_minus1_1).permute(3, 0, 1, 2).unsqueeze(0) | |
| corrected_chunk_tensor = corrected_chunk_tensor.contiguous() # Ensure contiguous memory layout | |
| output_tensor = corrected_chunk_tensor.to(device=device, dtype=dtype) | |
| # print(f"[match_and_blend_colors] Output tensor shape: {output_tensor.shape}") | |
| return output_tensor | |
| from skimage import color | |
| from scipy import ndimage | |
| from scipy.ndimage import binary_erosion, distance_transform_edt | |
| def match_and_blend_colors_with_mask( | |
| source_chunk: torch.Tensor, | |
| reference_video: torch.Tensor, | |
| mask: torch.Tensor, | |
| strength: float, | |
| copy_mode: str = "corrected", # "corrected", "reference", "source", "progressive_blend" | |
| source_border_distance: int = 10, | |
| reference_border_distance: int = 10 | |
| ) -> torch.Tensor: | |
| """ | |
| Matches the color of a source video chunk to a reference video using mask-based region sampling. | |
| Args: | |
| source_chunk (torch.Tensor): The video chunk to be color-corrected (B, C, T, H, W) in range [-1, 1]. | |
| Assumes B=1 (batch size of 1). | |
| reference_video (torch.Tensor): The reference video (B, C, T, H, W) in range [-1, 1]. | |
| Must have same temporal dimension as source_chunk. | |
| mask (torch.Tensor): Binary mask (B, 1, T, H, W) or (T, H, W) or (H, W) with values 0 and 1. | |
| Color correction is applied to pixels where mask=1. | |
| strength (float): The strength of the color correction (0.0 to 1.0). | |
| 0.0 means no correction, 1.0 means full correction. | |
| copy_mode (str): What to do with mask=0 pixels: | |
| "corrected" (keep original), "reference", "source", | |
| "progressive_blend" (double-sided progressive blending near borders). | |
| source_border_distance (int): Distance in pixels from mask border to sample source video (mask=1 side). | |
| reference_border_distance (int): Distance in pixels from mask border to sample reference video (mask=0 side). | |
| For "progressive_blend" mode, this also defines the blending falloff distance. | |
| Returns: | |
| torch.Tensor: The color-corrected and blended video chunk. | |
| Notes: | |
| - Color statistics are sampled from border regions to determine source and reference tints | |
| - Progressive blending creates smooth double-sided transitions: | |
| * mask=1 side: 60% source + 40% reference at border → 100% source deeper in | |
| * mask=0 side: 60% reference + 40% source at border → 100% reference deeper in | |
| """ | |
| if strength == 0.0: | |
| return source_chunk | |
| if not 0.0 <= strength <= 1.0: | |
| raise ValueError(f"Strength must be between 0.0 and 1.0, got {strength}") | |
| if copy_mode not in ["corrected", "reference", "source", "progressive_blend"]: | |
| raise ValueError(f"copy_mode must be 'corrected', 'reference', 'source', or 'progressive_blend', got {copy_mode}") | |
| device = source_chunk.device | |
| dtype = source_chunk.dtype | |
| B, C, T, H, W = source_chunk.shape | |
| # Handle different mask dimensions | |
| if mask.dim() == 2: # (H, W) | |
| mask = mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).expand(B, 1, T, H, W) | |
| elif mask.dim() == 3: # (T, H, W) | |
| mask = mask.unsqueeze(0).unsqueeze(0).expand(B, 1, T, H, W) | |
| elif mask.dim() == 4: # (B, T, H, W) - missing channel dim | |
| mask = mask.unsqueeze(1) | |
| # mask should now be (B, 1, T, H, W) | |
| # Convert to numpy for processing | |
| source_np = source_chunk.squeeze(0).permute(1, 2, 3, 0).cpu().numpy() # (T, H, W, C) | |
| reference_np = reference_video.squeeze(0).permute(1, 2, 3, 0).cpu().numpy() # (T, H, W, C) | |
| mask_np = mask.squeeze(0).squeeze(0).cpu().numpy() # (T, H, W) | |
| # Normalize from [-1, 1] to [0, 1] for skimage | |
| source_np_01 = (source_np + 1.0) / 2.0 | |
| reference_np_01 = (reference_np + 1.0) / 2.0 | |
| # Clip to ensure values are in [0, 1] | |
| source_np_01 = np.clip(source_np_01, 0.0, 1.0) | |
| reference_np_01 = np.clip(reference_np_01, 0.0, 1.0) | |
| corrected_frames_np_01 = [] | |
| for t in range(T): | |
| source_frame = source_np_01[t] # (H, W, C) | |
| reference_frame = reference_np_01[t] # (H, W, C) | |
| frame_mask = mask_np[t] # (H, W) | |
| # Find mask borders and create distance maps | |
| border_regions = get_border_sampling_regions(frame_mask, source_border_distance, reference_border_distance) | |
| source_sample_region = border_regions['source_region'] # mask=1 side | |
| reference_sample_region = border_regions['reference_region'] # mask=0 side | |
| # Sample pixels for color statistics | |
| try: | |
| source_stats = compute_color_stats(source_frame, source_sample_region) | |
| reference_stats = compute_color_stats(reference_frame, reference_sample_region) | |
| except ValueError as e: | |
| print(f"Warning: Could not compute color statistics for frame {t}: {e}. Using original frame.") | |
| corrected_frames_np_01.append(source_frame) | |
| continue | |
| # Apply color correction to mask=1 area and handle mask=0 area based on copy_mode | |
| corrected_frame = apply_color_correction_with_mask( | |
| source_frame, frame_mask, source_stats, reference_stats, strength | |
| ) | |
| # Handle mask=0 pixels based on copy_mode | |
| if copy_mode == "reference": | |
| corrected_frame = apply_copy_with_mask(corrected_frame, reference_frame, frame_mask, "reference") | |
| elif copy_mode == "source": | |
| corrected_frame = apply_copy_with_mask(corrected_frame, source_frame, frame_mask, "source") | |
| elif copy_mode == "progressive_blend": | |
| # Apply progressive blending in mask=1 border area (source side) | |
| corrected_frame = apply_progressive_blend_in_corrected_area( | |
| corrected_frame, reference_frame, frame_mask, | |
| border_regions['source_region'], border_regions['source_distances'], | |
| border_regions['reference_region'], source_border_distance | |
| ) | |
| # Copy reference pixels to mask=0 area first | |
| corrected_frame = apply_copy_with_mask(corrected_frame, reference_frame, frame_mask, "reference") | |
| # Then apply progressive blending in mask=0 border area (reference side) | |
| corrected_frame = apply_progressive_blend_in_reference_area( | |
| corrected_frame, source_frame, frame_mask, | |
| border_regions['reference_region'], border_regions['reference_distances'], | |
| reference_border_distance | |
| ) | |
| corrected_frames_np_01.append(corrected_frame) | |
| corrected_chunk_np_01 = np.stack(corrected_frames_np_01, axis=0) | |
| # Convert back to [-1, 1] and return to tensor format | |
| corrected_chunk_np_minus1_1 = (corrected_chunk_np_01 * 2.0) - 1.0 | |
| corrected_chunk_tensor = torch.from_numpy(corrected_chunk_np_minus1_1).permute(3, 0, 1, 2).unsqueeze(0) | |
| corrected_chunk_tensor = corrected_chunk_tensor.contiguous() | |
| output_tensor = corrected_chunk_tensor.to(device=device, dtype=dtype) | |
| return output_tensor | |
| def get_border_sampling_regions(mask, source_border_distance, reference_border_distance): | |
| """ | |
| Create regions for sampling near mask borders with separate distances for source and reference. | |
| Args: | |
| mask: Binary mask (H, W) with 0s and 1s | |
| source_border_distance: Distance from border to include in source sampling (mask=1 side) | |
| reference_border_distance: Distance from border to include in reference sampling (mask=0 side) | |
| Returns: | |
| Dict with sampling regions and distance maps for blending | |
| """ | |
| # Convert to boolean for safety | |
| mask_bool = mask.astype(bool) | |
| # Distance from mask=0 regions (distance into mask=1 areas from border) | |
| dist_from_mask0 = distance_transform_edt(mask_bool) | |
| # Distance from mask=1 regions (distance into mask=0 areas from border) | |
| dist_from_mask1 = distance_transform_edt(~mask_bool) | |
| # Source region: mask=1 pixels within source_border_distance of mask=0 pixels | |
| source_region = mask_bool & (dist_from_mask0 <= source_border_distance) | |
| # Reference region: mask=0 pixels within reference_border_distance of mask=1 pixels | |
| reference_region = (~mask_bool) & (dist_from_mask1 <= reference_border_distance) | |
| return { | |
| 'source_region': source_region, | |
| 'reference_region': reference_region, | |
| 'source_distances': dist_from_mask0, # Distance into mask=1 from border | |
| 'reference_distances': dist_from_mask1 # Distance into mask=0 from border | |
| } | |
| def compute_color_stats(image, sample_region): | |
| """ | |
| Compute color statistics (mean and std) for Lab channels in the sampling region. | |
| Args: | |
| image: RGB image (H, W, C) in range [0, 1] | |
| sample_region: Boolean mask (H, W) indicating pixels to sample | |
| Returns: | |
| Dict with 'mean' and 'std' for Lab components | |
| """ | |
| if not np.any(sample_region): | |
| raise ValueError("No pixels in sampling region") | |
| # Convert to Lab | |
| try: | |
| image_lab = color.rgb2lab(image) | |
| except ValueError as e: | |
| raise ValueError(f"Could not convert image to Lab: {e}") | |
| # Extract pixels in sampling region | |
| sampled_pixels = image_lab[sample_region] # (N, 3) where N is number of sampled pixels | |
| # Compute statistics for each Lab channel | |
| stats = { | |
| 'mean': np.mean(sampled_pixels, axis=0), # (3,) for L, a, b | |
| 'std': np.std(sampled_pixels, axis=0) # (3,) for L, a, b | |
| } | |
| return stats | |
| def apply_color_correction_with_mask(source_frame, mask, source_stats, reference_stats, strength): | |
| """ | |
| Apply color correction to pixels where mask=1. | |
| Args: | |
| source_frame: RGB image (H, W, C) in range [0, 1] | |
| mask: Binary mask (H, W) | |
| source_stats: Color statistics from source sampling region | |
| reference_stats: Color statistics from reference sampling region | |
| strength: Blending strength | |
| Returns: | |
| Corrected RGB image (H, W, C) | |
| """ | |
| try: | |
| source_lab = color.rgb2lab(source_frame) | |
| except ValueError as e: | |
| print(f"Warning: Could not convert source frame to Lab: {e}. Using original frame.") | |
| return source_frame | |
| corrected_lab = source_lab.copy() | |
| correction_region = (mask == 1) # Apply correction to mask=1 pixels | |
| # Apply color transfer to pixels where mask=1 | |
| for c in range(3): # L, a, b channels | |
| mean_src = source_stats['mean'][c] | |
| std_src = source_stats['std'][c] | |
| mean_ref = reference_stats['mean'][c] | |
| std_ref = reference_stats['std'][c] | |
| if std_src == 0: | |
| # Handle case where source channel has no variation | |
| corrected_lab[correction_region, c] = mean_ref | |
| else: | |
| # Standard color transfer formula | |
| corrected_lab[correction_region, c] = ( | |
| (corrected_lab[correction_region, c] - mean_src) * (std_ref / std_src) + mean_ref | |
| ) | |
| try: | |
| fully_corrected_rgb = color.lab2rgb(corrected_lab) | |
| except ValueError as e: | |
| print(f"Warning: Could not convert corrected frame back to RGB: {e}. Using original frame.") | |
| return source_frame | |
| # Clip to [0, 1] | |
| fully_corrected_rgb = np.clip(fully_corrected_rgb, 0.0, 1.0) | |
| # Blend with original (only in correction region) | |
| result = source_frame.copy() | |
| result[correction_region] = ( | |
| (1 - strength) * source_frame[correction_region] + | |
| strength * fully_corrected_rgb[correction_region] | |
| ) | |
| return result | |
| def apply_progressive_blend_in_corrected_area(corrected_frame, reference_frame, mask, source_region, source_distances, reference_region, source_border_distance): | |
| """ | |
| Apply progressive blending in the corrected area (mask=1) near the border. | |
| Args: | |
| corrected_frame: RGB image (H, W, C) - the color-corrected source frame | |
| reference_frame: RGB image (H, W, C) - the reference frame | |
| mask: Binary mask (H, W) | |
| source_region: Boolean mask (H, W) indicating the source blending region (mask=1 near border) | |
| source_distances: Distance map (H, W) into mask=1 area from mask=0 border | |
| reference_region: Boolean mask (H, W) indicating the reference sampling region (mask=0 near border) | |
| source_border_distance: Maximum distance for source blending | |
| Returns: | |
| Blended RGB image (H, W, C) | |
| Notes: | |
| - Each source pixel blends with its closest reference border pixel (for speed) | |
| - At mask border: 60% source + 40% reference | |
| - Deeper into mask=1 area: 100% corrected source | |
| """ | |
| result = corrected_frame.copy() | |
| # Blend in the source region (mask=1 pixels near border) | |
| blend_region = source_region | |
| if np.any(blend_region): | |
| # Find immediate border pixels (mask=0 pixels adjacent to mask=1 pixels) | |
| # This is much faster than using the entire reference region | |
| from scipy.ndimage import binary_dilation | |
| # Dilate mask=1 by 1 pixel, then find intersection with mask=0 | |
| mask_1_dilated = binary_dilation(mask == 1, structure=np.ones((3, 3))) | |
| border_pixels = (mask == 0) & mask_1_dilated | |
| if np.any(border_pixels): | |
| # Find closest border pixel for each source pixel | |
| source_coords = np.column_stack(np.where(blend_region)) # (N, 2) - y, x coordinates | |
| border_coords = np.column_stack(np.where(border_pixels)) # (M, 2) - much smaller set! | |
| # For each source pixel, find closest border pixel | |
| from scipy.spatial.distance import cdist | |
| distances_matrix = cdist(source_coords, border_coords, metric='euclidean') | |
| closest_border_indices = np.argmin(distances_matrix, axis=1) | |
| # Normalize source distances for blending weights | |
| min_distance_in_region = np.min(source_distances[blend_region]) | |
| max_distance_in_region = np.max(source_distances[blend_region]) | |
| if max_distance_in_region > min_distance_in_region: | |
| # Calculate blend weights: 0.4 at border (60% source + 40% reference), 0.0 at max distance (100% source) | |
| source_dist_values = source_distances[blend_region] | |
| normalized_distances = (source_dist_values - min_distance_in_region) / (max_distance_in_region - min_distance_in_region) | |
| blend_weights = 0.4 * (1.0 - normalized_distances) # Start with 40% reference influence at border | |
| # Apply blending with closest border pixels | |
| for i, (source_y, source_x) in enumerate(source_coords): | |
| closest_border_idx = closest_border_indices[i] | |
| border_y, border_x = border_coords[closest_border_idx] | |
| weight = blend_weights[i] | |
| # Blend with closest border pixel | |
| result[source_y, source_x] = ( | |
| (1.0 - weight) * corrected_frame[source_y, source_x] + | |
| weight * reference_frame[border_y, border_x] | |
| ) | |
| return result | |
| def apply_progressive_blend_in_reference_area(reference_frame, source_frame, mask, reference_region, reference_distances, reference_border_distance): | |
| """ | |
| Apply progressive blending in the reference area (mask=0) near the border. | |
| Args: | |
| reference_frame: RGB image (H, W, C) - the reference frame with copied reference pixels | |
| source_frame: RGB image (H, W, C) - the original source frame | |
| mask: Binary mask (H, W) | |
| reference_region: Boolean mask (H, W) indicating the reference blending region (mask=0 near border) | |
| reference_distances: Distance map (H, W) into mask=0 area from mask=1 border | |
| reference_border_distance: Maximum distance for reference blending | |
| Returns: | |
| Blended RGB image (H, W, C) | |
| Notes: | |
| - Each reference pixel blends with its closest source border pixel (for speed) | |
| - At mask border: 60% reference + 40% source | |
| - Deeper into mask=0 area: 100% reference | |
| """ | |
| result = reference_frame.copy() | |
| # Blend in the reference region (mask=0 pixels near border) | |
| blend_region = reference_region | |
| if np.any(blend_region): | |
| # Find immediate border pixels (mask=1 pixels adjacent to mask=0 pixels) | |
| from scipy.ndimage import binary_dilation | |
| # Dilate mask=0 by 1 pixel, then find intersection with mask=1 | |
| mask_0_dilated = binary_dilation(mask == 0, structure=np.ones((3, 3))) | |
| source_border_pixels = (mask == 1) & mask_0_dilated | |
| if np.any(source_border_pixels): | |
| # Find closest source border pixel for each reference pixel | |
| reference_coords = np.column_stack(np.where(blend_region)) # (N, 2) - y, x coordinates | |
| source_border_coords = np.column_stack(np.where(source_border_pixels)) # (M, 2) | |
| # For each reference pixel, find closest source border pixel | |
| from scipy.spatial.distance import cdist | |
| distances_matrix = cdist(reference_coords, source_border_coords, metric='euclidean') | |
| closest_source_indices = np.argmin(distances_matrix, axis=1) | |
| # Normalize reference distances for blending weights | |
| min_distance_in_region = np.min(reference_distances[blend_region]) | |
| max_distance_in_region = np.max(reference_distances[blend_region]) | |
| if max_distance_in_region > min_distance_in_region: | |
| # Calculate blend weights: 0.4 at border (60% reference + 40% source), 0.0 at max distance (100% reference) | |
| reference_dist_values = reference_distances[blend_region] | |
| normalized_distances = (reference_dist_values - min_distance_in_region) / (max_distance_in_region - min_distance_in_region) | |
| blend_weights = 0.4 * (1.0 - normalized_distances) # Start with 40% source influence at border | |
| # Apply blending with closest source border pixels | |
| for i, (ref_y, ref_x) in enumerate(reference_coords): | |
| closest_source_idx = closest_source_indices[i] | |
| source_y, source_x = source_border_coords[closest_source_idx] | |
| weight = blend_weights[i] | |
| # Blend: weight=0.4 means 60% reference + 40% source at border | |
| result[ref_y, ref_x] = ( | |
| (1.0 - weight) * reference_frame[ref_y, ref_x] + | |
| weight * source_frame[source_y, source_x] | |
| ) | |
| return result | |
| def apply_copy_with_mask(source_frame, reference_frame, mask, copy_source): | |
| """ | |
| Copy pixels to mask=0 regions based on copy_source parameter. | |
| Args: | |
| source_frame: RGB image (H, W, C) | |
| reference_frame: RGB image (H, W, C) | |
| mask: Binary mask (H, W) | |
| copy_source: "reference" or "source" | |
| Returns: | |
| Combined RGB image (H, W, C) | |
| """ | |
| result = source_frame.copy() | |
| mask_0_region = (mask == 0) | |
| if copy_source == "reference": | |
| result[mask_0_region] = reference_frame[mask_0_region] | |
| # If "source", we keep the original source pixels (no change needed) | |
| return result |