Spaces:
Running
Running
| import json | |
| import logging | |
| import os | |
| from pathlib import Path | |
| from typing import Union | |
| import pandas as pd | |
| import torch | |
| from torch.utils.data.dataset import Dataset | |
| from torchvision.transforms import v2 | |
| from torio.io import StreamingMediaDecoder | |
| from ...utils.dist_utils import local_rank | |
| log = logging.getLogger() | |
| _CLIP_SIZE = 384 | |
| _CLIP_FPS = 8.0 | |
| _SYNC_SIZE = 224 | |
| _SYNC_FPS = 25.0 | |
| class VideoDataset(Dataset): | |
| def __init__( | |
| self, | |
| video_root: Union[str, Path], | |
| *, | |
| duration_sec: float = 8.0, | |
| ): | |
| self.video_root = Path(video_root) | |
| self.duration_sec = duration_sec | |
| self.clip_expected_length = int(_CLIP_FPS * self.duration_sec) | |
| self.sync_expected_length = int(_SYNC_FPS * self.duration_sec) | |
| self.clip_transform = v2.Compose([ | |
| v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC), | |
| v2.ToImage(), | |
| v2.ToDtype(torch.float32, scale=True), | |
| ]) | |
| self.sync_transform = v2.Compose([ | |
| v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC), | |
| v2.CenterCrop(_SYNC_SIZE), | |
| v2.ToImage(), | |
| v2.ToDtype(torch.float32, scale=True), | |
| v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
| ]) | |
| # to be implemented by subclasses | |
| self.captions = {} | |
| self.videos = sorted(list(self.captions.keys())) | |
| def sample(self, idx: int) -> dict[str, torch.Tensor]: | |
| video_id = self.videos[idx] | |
| caption = self.captions[video_id] | |
| reader = StreamingMediaDecoder(self.video_root / (video_id + '.mp4')) | |
| reader.add_basic_video_stream( | |
| frames_per_chunk=int(_CLIP_FPS * self.duration_sec), | |
| frame_rate=_CLIP_FPS, | |
| format='rgb24', | |
| ) | |
| reader.add_basic_video_stream( | |
| frames_per_chunk=int(_SYNC_FPS * self.duration_sec), | |
| frame_rate=_SYNC_FPS, | |
| format='rgb24', | |
| ) | |
| reader.fill_buffer() | |
| data_chunk = reader.pop_chunks() | |
| clip_chunk = data_chunk[0] | |
| sync_chunk = data_chunk[1] | |
| if clip_chunk is None: | |
| raise RuntimeError(f'CLIP video returned None {video_id}') | |
| if clip_chunk.shape[0] < self.clip_expected_length: | |
| raise RuntimeError( | |
| f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}' | |
| ) | |
| if sync_chunk is None: | |
| raise RuntimeError(f'Sync video returned None {video_id}') | |
| if sync_chunk.shape[0] < self.sync_expected_length: | |
| raise RuntimeError( | |
| f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}' | |
| ) | |
| # truncate the video | |
| clip_chunk = clip_chunk[:self.clip_expected_length] | |
| if clip_chunk.shape[0] != self.clip_expected_length: | |
| raise RuntimeError(f'CLIP video wrong length {video_id}, ' | |
| f'expected {self.clip_expected_length}, ' | |
| f'got {clip_chunk.shape[0]}') | |
| clip_chunk = self.clip_transform(clip_chunk) | |
| sync_chunk = sync_chunk[:self.sync_expected_length] | |
| if sync_chunk.shape[0] != self.sync_expected_length: | |
| raise RuntimeError(f'Sync video wrong length {video_id}, ' | |
| f'expected {self.sync_expected_length}, ' | |
| f'got {sync_chunk.shape[0]}') | |
| sync_chunk = self.sync_transform(sync_chunk) | |
| data = { | |
| 'name': video_id, | |
| 'caption': caption, | |
| 'clip_video': clip_chunk, | |
| 'sync_video': sync_chunk, | |
| } | |
| return data | |
| def __getitem__(self, idx: int) -> dict[str, torch.Tensor]: | |
| try: | |
| return self.sample(idx) | |
| except Exception as e: | |
| log.error(f'Error loading video {self.videos[idx]}: {e}') | |
| return None | |
| def __len__(self): | |
| return len(self.captions) | |
| class VGGSound(VideoDataset): | |
| def __init__( | |
| self, | |
| video_root: Union[str, Path], | |
| csv_path: Union[str, Path], | |
| *, | |
| duration_sec: float = 8.0, | |
| ): | |
| super().__init__(video_root, duration_sec=duration_sec) | |
| self.video_root = Path(video_root) | |
| self.csv_path = Path(csv_path) | |
| videos = sorted(os.listdir(self.video_root)) | |
| if local_rank == 0: | |
| log.info(f'{len(videos)} videos found in {video_root}') | |
| self.captions = {} | |
| df = pd.read_csv(csv_path, header=None, names=['id', 'sec', 'caption', | |
| 'split']).to_dict(orient='records') | |
| videos_no_found = [] | |
| for row in df: | |
| if row['split'] == 'test': | |
| start_sec = int(row['sec']) | |
| video_id = str(row['id']) | |
| # this is how our videos are named | |
| video_name = f'{video_id}_{start_sec:06d}' | |
| if video_name + '.mp4' not in videos: | |
| videos_no_found.append(video_name) | |
| continue | |
| self.captions[video_name] = row['caption'] | |
| if local_rank == 0: | |
| log.info(f'{len(videos)} videos found in {video_root}') | |
| log.info(f'{len(self.captions)} useable videos found') | |
| if videos_no_found: | |
| log.info(f'{len(videos_no_found)} found in {csv_path} but not in {video_root}') | |
| log.info( | |
| 'A small amount is expected, as not all videos are still available on YouTube') | |
| self.videos = sorted(list(self.captions.keys())) | |
| class MovieGen(VideoDataset): | |
| def __init__( | |
| self, | |
| video_root: Union[str, Path], | |
| jsonl_root: Union[str, Path], | |
| *, | |
| duration_sec: float = 10.0, | |
| ): | |
| super().__init__(video_root, duration_sec=duration_sec) | |
| self.video_root = Path(video_root) | |
| self.jsonl_root = Path(jsonl_root) | |
| videos = sorted(os.listdir(self.video_root)) | |
| videos = [v[:-4] for v in videos] # remove extensions | |
| self.captions = {} | |
| for v in videos: | |
| with open(self.jsonl_root / (v + '.jsonl')) as f: | |
| data = json.load(f) | |
| self.captions[v] = data['audio_prompt'] | |
| if local_rank == 0: | |
| log.info(f'{len(videos)} videos found in {video_root}') | |
| self.videos = videos | |