Spaces:
Running
Running
| import logging | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from ..ext.rotary_embeddings import compute_rope_rotations | |
| from .embeddings import TimestepEmbedder | |
| from .low_level import MLP, ChannelLastConv1d, ConvMLP | |
| from .transformer_layers import (FinalBlock, JointBlock, MMDitSingleBlock) | |
| log = logging.getLogger() | |
| class PreprocessedConditions: | |
| clip_f: torch.Tensor | |
| sync_f: torch.Tensor | |
| text_f: torch.Tensor | |
| clip_f_c: torch.Tensor | |
| text_f_c: torch.Tensor | |
| # Partially from https://github.com/facebookresearch/DiT | |
| class MMAudio(nn.Module): | |
| def __init__(self, | |
| *, | |
| latent_dim: int, | |
| clip_dim: int, | |
| sync_dim: int, | |
| text_dim: int, | |
| hidden_dim: int, | |
| depth: int, | |
| fused_depth: int, | |
| num_heads: int, | |
| mlp_ratio: float = 4.0, | |
| latent_seq_len: int, | |
| clip_seq_len: int, | |
| sync_seq_len: int, | |
| text_seq_len: int = 77, | |
| latent_mean: Optional[torch.Tensor] = None, | |
| latent_std: Optional[torch.Tensor] = None, | |
| empty_string_feat: Optional[torch.Tensor] = None, | |
| v2: bool = False) -> None: | |
| super().__init__() | |
| self.v2 = v2 | |
| self.latent_dim = latent_dim | |
| self._latent_seq_len = latent_seq_len | |
| self._clip_seq_len = clip_seq_len | |
| self._sync_seq_len = sync_seq_len | |
| self._text_seq_len = text_seq_len | |
| self.hidden_dim = hidden_dim | |
| self.num_heads = num_heads | |
| if v2: | |
| self.audio_input_proj = nn.Sequential( | |
| ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=7, padding=3), | |
| nn.SiLU(), | |
| ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=7, padding=3), | |
| ) | |
| self.clip_input_proj = nn.Sequential( | |
| nn.Linear(clip_dim, hidden_dim), | |
| nn.SiLU(), | |
| ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1), | |
| ) | |
| self.sync_input_proj = nn.Sequential( | |
| ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=7, padding=3), | |
| nn.SiLU(), | |
| ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1), | |
| ) | |
| self.text_input_proj = nn.Sequential( | |
| nn.Linear(text_dim, hidden_dim), | |
| nn.SiLU(), | |
| MLP(hidden_dim, hidden_dim * 4), | |
| ) | |
| else: | |
| self.audio_input_proj = nn.Sequential( | |
| ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=7, padding=3), | |
| nn.SELU(), | |
| ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=7, padding=3), | |
| ) | |
| self.clip_input_proj = nn.Sequential( | |
| nn.Linear(clip_dim, hidden_dim), | |
| ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1), | |
| ) | |
| self.sync_input_proj = nn.Sequential( | |
| ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=7, padding=3), | |
| nn.SELU(), | |
| ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1), | |
| ) | |
| self.text_input_proj = nn.Sequential( | |
| nn.Linear(text_dim, hidden_dim), | |
| MLP(hidden_dim, hidden_dim * 4), | |
| ) | |
| self.clip_cond_proj = nn.Linear(hidden_dim, hidden_dim) | |
| self.text_cond_proj = nn.Linear(hidden_dim, hidden_dim) | |
| self.global_cond_mlp = MLP(hidden_dim, hidden_dim * 4) | |
| # each synchformer output segment has 8 feature frames | |
| self.sync_pos_emb = nn.Parameter(torch.zeros((1, 1, 8, sync_dim))) | |
| self.final_layer = FinalBlock(hidden_dim, latent_dim) | |
| if v2: | |
| self.t_embed = TimestepEmbedder(hidden_dim, | |
| frequency_embedding_size=hidden_dim, | |
| max_period=1) | |
| else: | |
| self.t_embed = TimestepEmbedder(hidden_dim, | |
| frequency_embedding_size=256, | |
| max_period=10000) | |
| self.joint_blocks = nn.ModuleList([ | |
| JointBlock(hidden_dim, | |
| num_heads, | |
| mlp_ratio=mlp_ratio, | |
| pre_only=(i == depth - fused_depth - 1)) for i in range(depth - fused_depth) | |
| ]) | |
| self.fused_blocks = nn.ModuleList([ | |
| MMDitSingleBlock(hidden_dim, num_heads, mlp_ratio=mlp_ratio, kernel_size=3, padding=1) | |
| for i in range(fused_depth) | |
| ]) | |
| if latent_mean is None: | |
| # these values are not meant to be used | |
| # if you don't provide mean/std here, we should load them later from a checkpoint | |
| assert latent_std is None | |
| latent_mean = torch.ones(latent_dim).view(1, 1, -1).fill_(float('nan')) | |
| latent_std = torch.ones(latent_dim).view(1, 1, -1).fill_(float('nan')) | |
| else: | |
| assert latent_std is not None | |
| assert latent_mean.numel() == latent_dim, f'{latent_mean.numel()=} != {latent_dim=}' | |
| if empty_string_feat is None: | |
| empty_string_feat = torch.zeros((text_seq_len, text_dim)) | |
| self.latent_mean = nn.Parameter(latent_mean.view(1, 1, -1), requires_grad=False) | |
| self.latent_std = nn.Parameter(latent_std.view(1, 1, -1), requires_grad=False) | |
| self.empty_string_feat = nn.Parameter(empty_string_feat, requires_grad=False) | |
| self.empty_clip_feat = nn.Parameter(torch.zeros(1, clip_dim), requires_grad=True) | |
| self.empty_sync_feat = nn.Parameter(torch.zeros(1, sync_dim), requires_grad=True) | |
| self.initialize_weights() | |
| self.initialize_rotations() | |
| def initialize_rotations(self): | |
| base_freq = 1.0 | |
| latent_rot = compute_rope_rotations(self._latent_seq_len, | |
| self.hidden_dim // self.num_heads, | |
| 10000, | |
| freq_scaling=base_freq, | |
| device=self.device) | |
| clip_rot = compute_rope_rotations(self._clip_seq_len, | |
| self.hidden_dim // self.num_heads, | |
| 10000, | |
| freq_scaling=base_freq * self._latent_seq_len / | |
| self._clip_seq_len, | |
| device=self.device) | |
| self.latent_rot = latent_rot #, persistent=False) | |
| self.clip_rot = clip_rot #, persistent=False) | |
| def update_seq_lengths(self, latent_seq_len: int, clip_seq_len: int, sync_seq_len: int) -> None: | |
| self._latent_seq_len = latent_seq_len | |
| self._clip_seq_len = clip_seq_len | |
| self._sync_seq_len = sync_seq_len | |
| self.initialize_rotations() | |
| def initialize_weights(self): | |
| def _basic_init(module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.xavier_uniform_(module.weight) | |
| if module.bias is not None: | |
| nn.init.constant_(module.bias, 0) | |
| self.apply(_basic_init) | |
| # Initialize timestep embedding MLP: | |
| nn.init.normal_(self.t_embed.mlp[0].weight, std=0.02) | |
| nn.init.normal_(self.t_embed.mlp[2].weight, std=0.02) | |
| # Zero-out adaLN modulation layers in DiT blocks: | |
| for block in self.joint_blocks: | |
| nn.init.constant_(block.latent_block.adaLN_modulation[-1].weight, 0) | |
| nn.init.constant_(block.latent_block.adaLN_modulation[-1].bias, 0) | |
| nn.init.constant_(block.clip_block.adaLN_modulation[-1].weight, 0) | |
| nn.init.constant_(block.clip_block.adaLN_modulation[-1].bias, 0) | |
| nn.init.constant_(block.text_block.adaLN_modulation[-1].weight, 0) | |
| nn.init.constant_(block.text_block.adaLN_modulation[-1].bias, 0) | |
| for block in self.fused_blocks: | |
| nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
| nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
| # Zero-out output layers: | |
| nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
| nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
| nn.init.constant_(self.final_layer.conv.weight, 0) | |
| nn.init.constant_(self.final_layer.conv.bias, 0) | |
| # empty string feat shall be initialized by a CLIP encoder | |
| nn.init.constant_(self.sync_pos_emb, 0) | |
| nn.init.constant_(self.empty_clip_feat, 0) | |
| nn.init.constant_(self.empty_sync_feat, 0) | |
| def normalize(self, x: torch.Tensor) -> torch.Tensor: | |
| # return (x - self.latent_mean) / self.latent_std | |
| return x.sub_(self.latent_mean).div_(self.latent_std) | |
| def unnormalize(self, x: torch.Tensor) -> torch.Tensor: | |
| # return x * self.latent_std + self.latent_mean | |
| return x.mul_(self.latent_std).add_(self.latent_mean) | |
| def preprocess_conditions(self, clip_f: torch.Tensor, sync_f: torch.Tensor, | |
| text_f: torch.Tensor) -> PreprocessedConditions: | |
| """ | |
| cache computations that do not depend on the latent/time step | |
| i.e., the features are reused over steps during inference | |
| """ | |
| assert clip_f.shape[1] == self._clip_seq_len, f'{clip_f.shape=} {self._clip_seq_len=}' | |
| assert sync_f.shape[1] == self._sync_seq_len, f'{sync_f.shape=} {self._sync_seq_len=}' | |
| assert text_f.shape[1] == self._text_seq_len, f'{text_f.shape=} {self._text_seq_len=}' | |
| bs = clip_f.shape[0] | |
| # B * num_segments (24) * 8 * 768 | |
| num_sync_segments = self._sync_seq_len // 8 | |
| sync_f = sync_f.view(bs, num_sync_segments, 8, -1) + self.sync_pos_emb | |
| sync_f = sync_f.flatten(1, 2) # (B, VN, D) | |
| # extend vf to match x | |
| clip_f = self.clip_input_proj(clip_f) # (B, VN, D) | |
| sync_f = self.sync_input_proj(sync_f) # (B, VN, D) | |
| text_f = self.text_input_proj(text_f) # (B, VN, D) | |
| # upsample the sync features to match the audio | |
| sync_f = sync_f.transpose(1, 2) # (B, D, VN) | |
| sync_f = F.interpolate(sync_f, size=self._latent_seq_len, mode='nearest-exact') | |
| sync_f = sync_f.transpose(1, 2) # (B, N, D) | |
| # get conditional features from the clip side | |
| clip_f_c = self.clip_cond_proj(clip_f.mean(dim=1)) # (B, D) | |
| text_f_c = self.text_cond_proj(text_f.mean(dim=1)) # (B, D) | |
| return PreprocessedConditions(clip_f=clip_f, | |
| sync_f=sync_f, | |
| text_f=text_f, | |
| clip_f_c=clip_f_c, | |
| text_f_c=text_f_c) | |
| def predict_flow(self, latent: torch.Tensor, t: torch.Tensor, | |
| conditions: PreprocessedConditions) -> torch.Tensor: | |
| """ | |
| for non-cacheable computations | |
| """ | |
| assert latent.shape[1] == self._latent_seq_len, f'{latent.shape=} {self._latent_seq_len=}' | |
| clip_f = conditions.clip_f | |
| sync_f = conditions.sync_f | |
| text_f = conditions.text_f | |
| clip_f_c = conditions.clip_f_c | |
| text_f_c = conditions.text_f_c | |
| latent = self.audio_input_proj(latent) # (B, N, D) | |
| global_c = self.global_cond_mlp(clip_f_c + text_f_c) # (B, D) | |
| global_c = self.t_embed(t).unsqueeze(1) + global_c.unsqueeze(1) # (B, D) | |
| extended_c = global_c + sync_f | |
| self.latent_rot = self.latent_rot.to("cuda") | |
| self.clip_rot = self.clip_rot.to("cuda") | |
| for block in self.joint_blocks: | |
| latent, clip_f, text_f = block(latent, clip_f, text_f, global_c, extended_c, | |
| self.latent_rot, self.clip_rot) # (B, N, D) | |
| for block in self.fused_blocks: | |
| latent = block(latent, extended_c, self.latent_rot) | |
| self.latent_rot = self.latent_rot.to("cpu") | |
| self.clip_rot = self.clip_rot.to("cpu") | |
| # should be extended_c; this is a minor implementation error #55 | |
| flow = self.final_layer(latent, global_c) # (B, N, out_dim), remove t | |
| return flow | |
| def forward(self, latent: torch.Tensor, clip_f: torch.Tensor, sync_f: torch.Tensor, | |
| text_f: torch.Tensor, t: torch.Tensor) -> torch.Tensor: | |
| """ | |
| latent: (B, N, C) | |
| vf: (B, T, C_V) | |
| t: (B,) | |
| """ | |
| conditions = self.preprocess_conditions(clip_f, sync_f, text_f) | |
| flow = self.predict_flow(latent, t, conditions) | |
| return flow | |
| def get_empty_string_sequence(self, bs: int) -> torch.Tensor: | |
| return self.empty_string_feat.unsqueeze(0).expand(bs, -1, -1) | |
| def get_empty_clip_sequence(self, bs: int) -> torch.Tensor: | |
| return self.empty_clip_feat.unsqueeze(0).expand(bs, self._clip_seq_len, -1) | |
| def get_empty_sync_sequence(self, bs: int) -> torch.Tensor: | |
| return self.empty_sync_feat.unsqueeze(0).expand(bs, self._sync_seq_len, -1) | |
| def get_empty_conditions( | |
| self, | |
| bs: int, | |
| *, | |
| negative_text_features: Optional[torch.Tensor] = None) -> PreprocessedConditions: | |
| if negative_text_features is not None: | |
| empty_text = negative_text_features | |
| else: | |
| empty_text = self.get_empty_string_sequence(1) | |
| empty_clip = self.get_empty_clip_sequence(1) | |
| empty_sync = self.get_empty_sync_sequence(1) | |
| conditions = self.preprocess_conditions(empty_clip, empty_sync, empty_text) | |
| conditions.clip_f = conditions.clip_f.expand(bs, -1, -1) | |
| conditions.sync_f = conditions.sync_f.expand(bs, -1, -1) | |
| conditions.clip_f_c = conditions.clip_f_c.expand(bs, -1) | |
| if negative_text_features is None: | |
| conditions.text_f = conditions.text_f.expand(bs, -1, -1) | |
| conditions.text_f_c = conditions.text_f_c.expand(bs, -1) | |
| return conditions | |
| def ode_wrapper(self, t: torch.Tensor, latent: torch.Tensor, conditions: PreprocessedConditions, | |
| empty_conditions: PreprocessedConditions, cfg_strength: float) -> torch.Tensor: | |
| t = t * torch.ones(len(latent), device=latent.device, dtype=latent.dtype) | |
| if cfg_strength < 1.0: | |
| return self.predict_flow(latent, t, conditions) | |
| else: | |
| return (cfg_strength * self.predict_flow(latent, t, conditions) + | |
| (1 - cfg_strength) * self.predict_flow(latent, t, empty_conditions)) | |
| def load_weights(self, src_dict) -> None: | |
| if 't_embed.freqs' in src_dict: | |
| del src_dict['t_embed.freqs'] | |
| if 'latent_rot' in src_dict: | |
| del src_dict['latent_rot'] | |
| if 'clip_rot' in src_dict: | |
| del src_dict['clip_rot'] | |
| a,b = self.load_state_dict(src_dict, strict=True, assign= True) | |
| pass | |
| def device(self) -> torch.device: | |
| return self.latent_mean.device | |
| def latent_seq_len(self) -> int: | |
| return self._latent_seq_len | |
| def clip_seq_len(self) -> int: | |
| return self._clip_seq_len | |
| def sync_seq_len(self) -> int: | |
| return self._sync_seq_len | |
| def small_16k(**kwargs) -> MMAudio: | |
| num_heads = 7 | |
| return MMAudio(latent_dim=20, | |
| clip_dim=1024, | |
| sync_dim=768, | |
| text_dim=1024, | |
| hidden_dim=64 * num_heads, | |
| depth=12, | |
| fused_depth=8, | |
| num_heads=num_heads, | |
| latent_seq_len=250, | |
| clip_seq_len=64, | |
| sync_seq_len=192, | |
| **kwargs) | |
| def small_44k(**kwargs) -> MMAudio: | |
| num_heads = 7 | |
| return MMAudio(latent_dim=40, | |
| clip_dim=1024, | |
| sync_dim=768, | |
| text_dim=1024, | |
| hidden_dim=64 * num_heads, | |
| depth=12, | |
| fused_depth=8, | |
| num_heads=num_heads, | |
| latent_seq_len=345, | |
| clip_seq_len=64, | |
| sync_seq_len=192, | |
| **kwargs) | |
| def medium_44k(**kwargs) -> MMAudio: | |
| num_heads = 14 | |
| return MMAudio(latent_dim=40, | |
| clip_dim=1024, | |
| sync_dim=768, | |
| text_dim=1024, | |
| hidden_dim=64 * num_heads, | |
| depth=12, | |
| fused_depth=8, | |
| num_heads=num_heads, | |
| latent_seq_len=345, | |
| clip_seq_len=64, | |
| sync_seq_len=192, | |
| **kwargs) | |
| def large_44k(**kwargs) -> MMAudio: | |
| num_heads = 14 | |
| return MMAudio(latent_dim=40, | |
| clip_dim=1024, | |
| sync_dim=768, | |
| text_dim=1024, | |
| hidden_dim=64 * num_heads, | |
| depth=21, | |
| fused_depth=14, | |
| num_heads=num_heads, | |
| latent_seq_len=345, | |
| clip_seq_len=64, | |
| sync_seq_len=192, | |
| **kwargs) | |
| def large_44k_v2(**kwargs) -> MMAudio: | |
| num_heads = 14 | |
| return MMAudio(latent_dim=40, | |
| clip_dim=1024, | |
| sync_dim=768, | |
| text_dim=1024, | |
| hidden_dim=64 * num_heads, | |
| depth=21, | |
| fused_depth=14, | |
| num_heads=num_heads, | |
| latent_seq_len=345, | |
| clip_seq_len=64, | |
| sync_seq_len=192, | |
| v2=True, | |
| **kwargs) | |
| def get_my_mmaudio(name: str, **kwargs) -> MMAudio: | |
| if name == 'small_16k': | |
| return small_16k(**kwargs) | |
| if name == 'small_44k': | |
| return small_44k(**kwargs) | |
| if name == 'medium_44k': | |
| return medium_44k(**kwargs) | |
| if name == 'large_44k': | |
| return large_44k(**kwargs) | |
| if name == 'large_44k_v2': | |
| return large_44k_v2(**kwargs) | |
| raise ValueError(f'Unknown model name: {name}') | |
| if __name__ == '__main__': | |
| network = get_my_mmaudio('small_16k') | |
| # print the number of parameters in terms of millions | |
| num_params = sum(p.numel() for p in network.parameters()) / 1e6 | |
| print(f'Number of parameters: {num_params:.2f}M') | |