Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import spaces
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor, pipeline
|
|
|
|
| 5 |
import re
|
| 6 |
import random
|
| 7 |
import os
|
|
@@ -40,12 +41,35 @@ kolors_pipe.enable_model_cpu_offload()
|
|
| 40 |
vlm_model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner-v2").to(device).eval()
|
| 41 |
vlm_processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner-v2")
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# Prompt Enhancer
|
| 44 |
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device)
|
| 45 |
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
|
| 46 |
|
| 47 |
MAX_SEED = 2**32 - 1
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# VLM Captioner function
|
| 50 |
def create_captions_rich(image):
|
| 51 |
prompt = "caption en"
|
|
@@ -112,9 +136,12 @@ def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height,
|
|
| 112 |
|
| 113 |
# Gradio Interface
|
| 114 |
@spaces.GPU
|
| 115 |
-
def process_workflow(image, text_prompt, use_vlm, use_enhancer, model_choice, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
| 116 |
if use_vlm and image is not None:
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
| 118 |
else:
|
| 119 |
prompt = text_prompt
|
| 120 |
|
|
@@ -161,6 +188,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondar
|
|
| 161 |
with gr.Group(elem_classes="input-group"):
|
| 162 |
input_image = gr.Image(label="Input Image for VLM")
|
| 163 |
use_vlm = gr.Checkbox(label="Use VLM Captioner", value=False)
|
|
|
|
| 164 |
|
| 165 |
with gr.Group(elem_classes="input-group"):
|
| 166 |
text_prompt = gr.Textbox(label="Text Prompt")
|
|
@@ -187,7 +215,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondar
|
|
| 187 |
generate_btn.click(
|
| 188 |
fn=process_workflow,
|
| 189 |
inputs=[
|
| 190 |
-
input_image, text_prompt, use_vlm, use_enhancer, model_choice,
|
| 191 |
negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps
|
| 192 |
],
|
| 193 |
outputs=[output_image, final_prompt, used_seed]
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor, pipeline
|
| 5 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 6 |
import re
|
| 7 |
import random
|
| 8 |
import os
|
|
|
|
| 41 |
vlm_model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner-v2").to(device).eval()
|
| 42 |
vlm_processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner-v2")
|
| 43 |
|
| 44 |
+
# Initialize Florence model
|
| 45 |
+
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
| 46 |
+
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
| 47 |
+
|
| 48 |
# Prompt Enhancer
|
| 49 |
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device)
|
| 50 |
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
|
| 51 |
|
| 52 |
MAX_SEED = 2**32 - 1
|
| 53 |
|
| 54 |
+
# Florence caption function
|
| 55 |
+
def florence_caption(image):
|
| 56 |
+
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
|
| 57 |
+
generated_ids = florence_model.generate(
|
| 58 |
+
input_ids=inputs["input_ids"],
|
| 59 |
+
pixel_values=inputs["pixel_values"],
|
| 60 |
+
max_new_tokens=1024,
|
| 61 |
+
early_stopping=False,
|
| 62 |
+
do_sample=False,
|
| 63 |
+
num_beams=3,
|
| 64 |
+
)
|
| 65 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 66 |
+
parsed_answer = florence_processor.post_process_generation(
|
| 67 |
+
generated_text,
|
| 68 |
+
task="<MORE_DETAILED_CAPTION>",
|
| 69 |
+
image_size=(image.width, image.height)
|
| 70 |
+
)
|
| 71 |
+
return parsed_answer["<MORE_DETAILED_CAPTION>"]
|
| 72 |
+
|
| 73 |
# VLM Captioner function
|
| 74 |
def create_captions_rich(image):
|
| 75 |
prompt = "caption en"
|
|
|
|
| 136 |
|
| 137 |
# Gradio Interface
|
| 138 |
@spaces.GPU
|
| 139 |
+
def process_workflow(image, text_prompt, use_vlm, use_enhancer, model_choice, vlm_model_choice, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
| 140 |
if use_vlm and image is not None:
|
| 141 |
+
if vlm_model_choice == "Long Captioner":
|
| 142 |
+
prompt = create_captions_rich(image)
|
| 143 |
+
else: # Florence
|
| 144 |
+
prompt = florence_caption(image)
|
| 145 |
else:
|
| 146 |
prompt = text_prompt
|
| 147 |
|
|
|
|
| 188 |
with gr.Group(elem_classes="input-group"):
|
| 189 |
input_image = gr.Image(label="Input Image for VLM")
|
| 190 |
use_vlm = gr.Checkbox(label="Use VLM Captioner", value=False)
|
| 191 |
+
vlm_model_choice = gr.Radio(["Long Captioner", "Florence"], label="VLM Model", value="Long Captioner")
|
| 192 |
|
| 193 |
with gr.Group(elem_classes="input-group"):
|
| 194 |
text_prompt = gr.Textbox(label="Text Prompt")
|
|
|
|
| 215 |
generate_btn.click(
|
| 216 |
fn=process_workflow,
|
| 217 |
inputs=[
|
| 218 |
+
input_image, text_prompt, use_vlm, use_enhancer, model_choice, vlm_model_choice,
|
| 219 |
negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps
|
| 220 |
],
|
| 221 |
outputs=[output_image, final_prompt, used_seed]
|