Spaces:
Sleeping
Sleeping
File size: 9,290 Bytes
c806578 7e792dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import os
os.environ["HF_HOME"] = "/tmp/.cache"
os.environ["HF_DATASETS_CACHE"] = "/tmp/.cache"
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/.cache"
os.makedirs("/tmp/.cache", exist_ok=True)
import json
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from huggingface_hub import upload_file, hf_hub_download, InferenceClient
from flask import Flask, request, jsonify
import time
# Load embedding model
embedding_model = SentenceTransformer('paraphrase-mpnet-base-v2')
# Hugging Face inference client
token = os.getenv("HF_TOKEN") or os.getenv("NEW_PUP_AI_Project")
inference_client = InferenceClient(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
token=token
)
# Dataset load
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATASET_PATH = os.path.join(BASE_DIR, "dataset.json")
with open(DATASET_PATH, "r") as f:
dataset = json.load(f)
questions = [item["question"] for item in dataset]
answers = [item["answer"] for item in dataset]
question_embeddings = embedding_model.encode(questions, convert_to_tensor=True)
chat_history = []
feedback_data = []
feedback_questions = []
feedback_embeddings = None
dev_mode = {"enabled": False}
feedback_path = "/tmp/outputs/feedback.json"
os.makedirs("/tmp/outputs", exist_ok=True)
try:
hf_token = os.getenv("NEW_PUP_AI_Project")
downloaded_path = hf_hub_download(
repo_id="oceddyyy/University_Inquiries_Feedback",
filename="feedback.json",
repo_type="dataset",
token=hf_token
)
with open(downloaded_path, "r") as f:
feedback_data = json.load(f)
feedback_questions = [item["question"] for item in feedback_data]
if feedback_questions:
feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)
with open(feedback_path, "w") as f_local:
json.dump(feedback_data, f_local, indent=4)
except Exception as e:
print(f"[Startup] Feedback not loaded from Hugging Face. Using local only. Reason: {e}")
feedback_data = []
def upload_feedback_to_hf():
hf_token = os.getenv("NEW_PUP_AI_Project")
if not hf_token:
raise ValueError("Hugging Face token not found in environment variables!")
try:
upload_file(
path_or_fileobj=feedback_path,
path_in_repo="feedback.json",
repo_id="oceddyyy/University_Inquiries_Feedback",
repo_type="dataset",
token=hf_token
)
print("Feedback uploaded to Hugging Face successfully.")
except Exception as e:
print(f"Error uploading feedback to HF: {e}")
def chatbot_response(query, dev_mode_flag):
query_embedding = embedding_model.encode([query], convert_to_tensor=True)
# Feedback check
if feedback_embeddings is not None:
feedback_scores = cosine_similarity(query_embedding.cpu().numpy(), feedback_embeddings.cpu().numpy())[0]
best_idx = int(np.argmax(feedback_scores))
best_score = feedback_scores[best_idx]
matched_feedback = feedback_data[best_idx]
base_threshold = 0.8
upvotes = matched_feedback.get("upvotes", 0)
downvotes = matched_feedback.get("downvotes", 0)
adjusted_threshold = base_threshold - (0.01 * upvotes) + (0.01 * downvotes)
dynamic_threshold = min(max(adjusted_threshold, 0.4), 1.0)
if best_score >= dynamic_threshold:
return matched_feedback["response"], "Feedback", 0.0
# Handbook retrieval
similarity_scores = cosine_similarity(query_embedding.cpu().numpy(), question_embeddings.cpu().numpy())[0]
best_idx = int(np.argmax(similarity_scores))
best_score = similarity_scores[best_idx]
matched_item = dataset[best_idx]
matched_a = matched_item.get("answer", "")
matched_source = matched_item.get("source", "PUP Handbook")
# UnivAI+++ mode (LLM)
if dev_mode_flag:
prompt = (
f"You are an expert university assistant. "
f"A student asked: \"{query}\"\n"
f"Here is the most relevant handbook information:\n\"{matched_a}\"\n"
f"Using only the information above, answer the student's question in your own words. "
f"If the handbook info is not relevant, say you don't know."
)
try:
start_time = time.time()
response = ""
# Preferred: chat_completion
if hasattr(inference_client, "chat_completion"):
conversation = [
{"role": "system", "content": "You are an expert university assistant."},
{"role": "user", "content": prompt}
]
llm_response = inference_client.chat_completion(
messages=conversation,
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
max_tokens=200, # correct param for chat_completion
temperature=0.7
)
if isinstance(llm_response, dict) and "choices" in llm_response:
response = llm_response["choices"][0]["message"]["content"]
elif hasattr(llm_response, "generated_text"):
response = llm_response.generated_text
# Fallback: text_generation
else:
llm_response = inference_client.text_generation(
prompt,
max_new_tokens=200,
temperature=0.7
)
if isinstance(llm_response, dict) and "generated_text" in llm_response:
response = llm_response["generated_text"]
elif hasattr(llm_response, "generated_text"):
response = llm_response.generated_text
elapsed = time.time() - start_time
if not response.strip() or response.strip() == matched_a.strip():
if "month" in matched_item and "year" in matched_item:
response = f"As of {matched_item['month']}, {matched_item['year']}, {matched_a}"
else:
response = f"According to 2019 Proposed PUP Handbook, {matched_a}"
return response.strip(), matched_source, elapsed
except Exception as e:
error_msg = f"[ERROR] HF inference failed: {e}"
return f"(UnivAI+++ error: {error_msg})", matched_source, 0.0
# UnivAI mode (retrieval only)
if best_score < 0.4:
response = "Sorry, but the PUP handbook does not contain such information."
else:
if "month" in matched_item and "year" in matched_item:
response = f"As of {matched_item['month']}, {matched_item['year']}, {matched_a}"
else:
response = f"According to 2019 Proposed PUP Handbook, {matched_a}"
return response.strip(), matched_source, 0.0
def record_feedback(feedback, query, response):
global feedback_embeddings, feedback_questions
matched = False
new_embedding = embedding_model.encode([query], convert_to_tensor=True)
for item in feedback_data:
existing_embedding = embedding_model.encode([item["question"]], convert_to_tensor=True)
similarity = cosine_similarity(existing_embedding.cpu().numpy(), new_embedding.cpu().numpy())[0][0]
if similarity >= 0.8 and item["response"] == response:
matched = True
votes = {"positive": "upvotes", "negative": "downvotes"}
item[votes[feedback]] = item.get(votes[feedback], 0) + 1
break
if not matched:
entry = {
"question": query,
"response": response,
"feedback": feedback,
"upvotes": 1 if feedback == "positive" else 0,
"downvotes": 1 if feedback == "negative" else 0
}
feedback_data.append(entry)
with open(feedback_path, "w") as f:
json.dump(feedback_data, f, indent=4)
feedback_questions = [item["question"] for item in feedback_data]
if feedback_questions:
feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)
upload_feedback_to_hf()
app = Flask(__name__)
@app.route("/api/chat", methods=["POST"])
def chat():
data = request.json
query = data.get("query", "")
dev = data.get("dev_mode", False)
dev_mode["enabled"] = dev
response, source, elapsed = chatbot_response(query, dev)
return jsonify({"response": response, "source": source, "response_time": elapsed})
@app.route("/api/feedback", methods=["POST"])
def feedback():
data = request.json
query = data.get("query", "")
response = data.get("response", "")
feedback_type = data.get("feedback", "")
record_feedback(feedback_type, query, response)
return jsonify({"status": "success"})
@app.route("/", methods=["GET"])
def index():
return "University Inquiries AI Chatbot API. Use POST /chat or /feedback.", 200
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7861) |