Spaces:
Sleeping
Sleeping
Commit
·
0c62e78
1
Parent(s):
61f769a
[Fix] system posixpath runtime error
Browse files- Bearify_nb.ipynb +21 -38
- app/app.py +15 -10
Bearify_nb.ipynb
CHANGED
|
@@ -29,8 +29,11 @@
|
|
| 29 |
"outputs": [],
|
| 30 |
"source": [
|
| 31 |
"#|export\n",
|
| 32 |
-
"
|
| 33 |
-
"import
|
|
|
|
|
|
|
|
|
|
| 34 |
]
|
| 35 |
},
|
| 36 |
{
|
|
@@ -71,36 +74,23 @@
|
|
| 71 |
"outputs": [],
|
| 72 |
"source": [
|
| 73 |
"#|export\n",
|
| 74 |
-
"
|
| 75 |
-
"
|
| 76 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
]
|
| 78 |
},
|
| 79 |
{
|
| 80 |
"cell_type": "code",
|
| 81 |
"execution_count": 5,
|
| 82 |
-
"metadata": {
|
| 83 |
-
"id": "Ko1vxtuzACNo"
|
| 84 |
-
},
|
| 85 |
-
"outputs": [],
|
| 86 |
-
"source": [
|
| 87 |
-
"#|export\n",
|
| 88 |
-
"learn = load_learner('bear_model.pkl')"
|
| 89 |
-
]
|
| 90 |
-
},
|
| 91 |
-
{
|
| 92 |
-
"cell_type": "code",
|
| 93 |
-
"execution_count": 11,
|
| 94 |
-
"metadata": {},
|
| 95 |
-
"outputs": [],
|
| 96 |
-
"source": [
|
| 97 |
-
"#|export\n",
|
| 98 |
-
"pathlib.PosixPath = temp"
|
| 99 |
-
]
|
| 100 |
-
},
|
| 101 |
-
{
|
| 102 |
-
"cell_type": "code",
|
| 103 |
-
"execution_count": 7,
|
| 104 |
"metadata": {
|
| 105 |
"colab": {
|
| 106 |
"base_uri": "https://localhost:8080/",
|
|
@@ -139,14 +129,7 @@
|
|
| 139 |
},
|
| 140 |
{
|
| 141 |
"data": {
|
| 142 |
-
"text/html": [
|
| 143 |
-
"\n",
|
| 144 |
-
" <div>\n",
|
| 145 |
-
" <progress value='0' class='' max='1' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 146 |
-
" 0.00% [0/1 00:00<?]\n",
|
| 147 |
-
" </div>\n",
|
| 148 |
-
" "
|
| 149 |
-
],
|
| 150 |
"text/plain": [
|
| 151 |
"<IPython.core.display.HTML object>"
|
| 152 |
]
|
|
@@ -160,7 +143,7 @@
|
|
| 160 |
"('black', tensor(0), tensor([9.9997e-01, 2.5549e-05, 4.9422e-07]))"
|
| 161 |
]
|
| 162 |
},
|
| 163 |
-
"execution_count":
|
| 164 |
"metadata": {},
|
| 165 |
"output_type": "execute_result"
|
| 166 |
}
|
|
@@ -339,7 +322,7 @@
|
|
| 339 |
},
|
| 340 |
{
|
| 341 |
"cell_type": "code",
|
| 342 |
-
"execution_count":
|
| 343 |
"metadata": {},
|
| 344 |
"outputs": [
|
| 345 |
{
|
|
@@ -383,7 +366,7 @@
|
|
| 383 |
"name": "python",
|
| 384 |
"nbconvert_exporter": "python",
|
| 385 |
"pygments_lexer": "ipython3",
|
| 386 |
-
"version": "3.
|
| 387 |
}
|
| 388 |
},
|
| 389 |
"nbformat": 4,
|
|
|
|
| 29 |
"outputs": [],
|
| 30 |
"source": [
|
| 31 |
"#|export\n",
|
| 32 |
+
"import os\n",
|
| 33 |
+
"import pathlib\n",
|
| 34 |
+
"\n",
|
| 35 |
+
"import gradio as gr\n",
|
| 36 |
+
"from fastai.vision.all import *"
|
| 37 |
]
|
| 38 |
},
|
| 39 |
{
|
|
|
|
| 74 |
"outputs": [],
|
| 75 |
"source": [
|
| 76 |
"#|export\n",
|
| 77 |
+
"\n",
|
| 78 |
+
"# Check the operating system\n",
|
| 79 |
+
"if os.name == 'nt': # 'nt' is the name for Windows NT (Windows)\n",
|
| 80 |
+
" temp = pathlib.PosixPath\n",
|
| 81 |
+
" pathlib.PosixPath = pathlib.WindowsPath\n",
|
| 82 |
+
"\n",
|
| 83 |
+
"# Load the learner model\n",
|
| 84 |
+
"learn = load_learner('bear_model.pkl')\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"# Restore the original PosixPath if running on Windows\n",
|
| 87 |
+
"if os.name == 'nt':\n",
|
| 88 |
+
" pathlib.PosixPath = temp"
|
| 89 |
]
|
| 90 |
},
|
| 91 |
{
|
| 92 |
"cell_type": "code",
|
| 93 |
"execution_count": 5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
"metadata": {
|
| 95 |
"colab": {
|
| 96 |
"base_uri": "https://localhost:8080/",
|
|
|
|
| 129 |
},
|
| 130 |
{
|
| 131 |
"data": {
|
| 132 |
+
"text/html": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
"text/plain": [
|
| 134 |
"<IPython.core.display.HTML object>"
|
| 135 |
]
|
|
|
|
| 143 |
"('black', tensor(0), tensor([9.9997e-01, 2.5549e-05, 4.9422e-07]))"
|
| 144 |
]
|
| 145 |
},
|
| 146 |
+
"execution_count": 5,
|
| 147 |
"metadata": {},
|
| 148 |
"output_type": "execute_result"
|
| 149 |
}
|
|
|
|
| 322 |
},
|
| 323 |
{
|
| 324 |
"cell_type": "code",
|
| 325 |
+
"execution_count": 6,
|
| 326 |
"metadata": {},
|
| 327 |
"outputs": [
|
| 328 |
{
|
|
|
|
| 366 |
"name": "python",
|
| 367 |
"nbconvert_exporter": "python",
|
| 368 |
"pygments_lexer": "ipython3",
|
| 369 |
+
"version": "3.10.9"
|
| 370 |
}
|
| 371 |
},
|
| 372 |
"nbformat": 4,
|
app/app.py
CHANGED
|
@@ -1,31 +1,36 @@
|
|
| 1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../Bearify_nb.ipynb.
|
| 2 |
|
| 3 |
# %% auto 0
|
| 4 |
-
__all__ = ['
|
| 5 |
|
| 6 |
# %% ../Bearify_nb.ipynb 2
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
import gradio as gr
|
|
|
|
| 9 |
|
| 10 |
# %% ../Bearify_nb.ipynb 4
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
learn = load_learner('bear_model.pkl')
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
-
# %% ../Bearify_nb.ipynb
|
| 22 |
categories = ('Black', 'Grizzly', 'Teddy')
|
| 23 |
|
| 24 |
def classify_image(img):
|
| 25 |
pred, idx, probs = learn.predict(img)
|
| 26 |
return dict(zip(categories, map(float, probs)))
|
| 27 |
|
| 28 |
-
# %% ../Bearify_nb.ipynb
|
| 29 |
image = gr.Image()
|
| 30 |
labels = gr.Label()
|
| 31 |
examples = ['Images/teddy.jpg', 'Images/grizzly.jpg', 'Images/black.jpeg']
|
|
|
|
| 1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../Bearify_nb.ipynb.
|
| 2 |
|
| 3 |
# %% auto 0
|
| 4 |
+
__all__ = ['learn', 'categories', 'image', 'labels', 'examples', 'intf', 'classify_image']
|
| 5 |
|
| 6 |
# %% ../Bearify_nb.ipynb 2
|
| 7 |
+
import os
|
| 8 |
+
import pathlib
|
| 9 |
+
|
| 10 |
import gradio as gr
|
| 11 |
+
from fastai.vision.all import *
|
| 12 |
|
| 13 |
# %% ../Bearify_nb.ipynb 4
|
| 14 |
+
# Check the operating system
|
| 15 |
+
if os.name == 'nt': # 'nt' is the name for Windows NT (Windows)
|
| 16 |
+
temp = pathlib.PosixPath
|
| 17 |
+
pathlib.PosixPath = pathlib.WindowsPath
|
| 18 |
|
| 19 |
+
# Load the learner model
|
| 20 |
learn = load_learner('bear_model.pkl')
|
| 21 |
|
| 22 |
+
# Restore the original PosixPath if running on Windows
|
| 23 |
+
if os.name == 'nt':
|
| 24 |
+
pathlib.PosixPath = temp
|
| 25 |
|
| 26 |
+
# %% ../Bearify_nb.ipynb 6
|
| 27 |
categories = ('Black', 'Grizzly', 'Teddy')
|
| 28 |
|
| 29 |
def classify_image(img):
|
| 30 |
pred, idx, probs = learn.predict(img)
|
| 31 |
return dict(zip(categories, map(float, probs)))
|
| 32 |
|
| 33 |
+
# %% ../Bearify_nb.ipynb 8
|
| 34 |
image = gr.Image()
|
| 35 |
labels = gr.Label()
|
| 36 |
examples = ['Images/teddy.jpg', 'Images/grizzly.jpg', 'Images/black.jpeg']
|