Spaces:
Sleeping
Sleeping
Commit
·
369a7ae
1
Parent(s):
2282c97
[Fix] for working in windows sys
Browse files- Bearify_nb.ipynb +34 -16
- app.py +11 -3
Bearify_nb.ipynb
CHANGED
|
@@ -35,7 +35,7 @@
|
|
| 35 |
},
|
| 36 |
{
|
| 37 |
"cell_type": "code",
|
| 38 |
-
"execution_count":
|
| 39 |
"metadata": {
|
| 40 |
"colab": {
|
| 41 |
"base_uri": "https://localhost:8080/",
|
|
@@ -53,7 +53,7 @@
|
|
| 53 |
"PILImage mode=RGB size=192x128"
|
| 54 |
]
|
| 55 |
},
|
| 56 |
-
"execution_count":
|
| 57 |
"metadata": {},
|
| 58 |
"output_type": "execute_result"
|
| 59 |
}
|
|
@@ -66,10 +66,11 @@
|
|
| 66 |
},
|
| 67 |
{
|
| 68 |
"cell_type": "code",
|
| 69 |
-
"execution_count":
|
| 70 |
"metadata": {},
|
| 71 |
"outputs": [],
|
| 72 |
"source": [
|
|
|
|
| 73 |
"import pathlib\n",
|
| 74 |
"temp = pathlib.PosixPath\n",
|
| 75 |
"pathlib.PosixPath = pathlib.WindowsPath"
|
|
@@ -77,7 +78,7 @@
|
|
| 77 |
},
|
| 78 |
{
|
| 79 |
"cell_type": "code",
|
| 80 |
-
"execution_count":
|
| 81 |
"metadata": {
|
| 82 |
"id": "Ko1vxtuzACNo"
|
| 83 |
},
|
|
@@ -87,6 +88,16 @@
|
|
| 87 |
"learn = load_learner('bear_model.pkl')"
|
| 88 |
]
|
| 89 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
{
|
| 91 |
"cell_type": "code",
|
| 92 |
"execution_count": 7,
|
|
@@ -128,7 +139,14 @@
|
|
| 128 |
},
|
| 129 |
{
|
| 130 |
"data": {
|
| 131 |
-
"text/html": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
"text/plain": [
|
| 133 |
"<IPython.core.display.HTML object>"
|
| 134 |
]
|
|
@@ -139,7 +157,7 @@
|
|
| 139 |
{
|
| 140 |
"data": {
|
| 141 |
"text/plain": [
|
| 142 |
-
"('
|
| 143 |
]
|
| 144 |
},
|
| 145 |
"execution_count": 7,
|
|
@@ -153,7 +171,7 @@
|
|
| 153 |
},
|
| 154 |
{
|
| 155 |
"cell_type": "code",
|
| 156 |
-
"execution_count":
|
| 157 |
"metadata": {
|
| 158 |
"id": "k8MzL29fm5wO"
|
| 159 |
},
|
|
@@ -169,7 +187,7 @@
|
|
| 169 |
},
|
| 170 |
{
|
| 171 |
"cell_type": "code",
|
| 172 |
-
"execution_count":
|
| 173 |
"metadata": {
|
| 174 |
"colab": {
|
| 175 |
"base_uri": "https://localhost:8080/",
|
|
@@ -224,7 +242,7 @@
|
|
| 224 |
" 'Teddy': 4.94215839808021e-07}"
|
| 225 |
]
|
| 226 |
},
|
| 227 |
-
"execution_count":
|
| 228 |
"metadata": {},
|
| 229 |
"output_type": "execute_result"
|
| 230 |
}
|
|
@@ -235,7 +253,7 @@
|
|
| 235 |
},
|
| 236 |
{
|
| 237 |
"cell_type": "code",
|
| 238 |
-
"execution_count":
|
| 239 |
"metadata": {
|
| 240 |
"colab": {
|
| 241 |
"base_uri": "https://localhost:8080/",
|
|
@@ -249,7 +267,7 @@
|
|
| 249 |
"name": "stdout",
|
| 250 |
"output_type": "stream",
|
| 251 |
"text": [
|
| 252 |
-
"Running on local URL: http://127.0.0.1:
|
| 253 |
"\n",
|
| 254 |
"To create a public link, set `share=True` in `launch()`.\n"
|
| 255 |
]
|
|
@@ -258,7 +276,7 @@
|
|
| 258 |
"data": {
|
| 259 |
"text/plain": []
|
| 260 |
},
|
| 261 |
-
"execution_count":
|
| 262 |
"metadata": {},
|
| 263 |
"output_type": "execute_result"
|
| 264 |
},
|
|
@@ -321,7 +339,7 @@
|
|
| 321 |
},
|
| 322 |
{
|
| 323 |
"cell_type": "code",
|
| 324 |
-
"execution_count":
|
| 325 |
"metadata": {},
|
| 326 |
"outputs": [
|
| 327 |
{
|
|
@@ -351,9 +369,9 @@
|
|
| 351 |
"provenance": []
|
| 352 |
},
|
| 353 |
"kernelspec": {
|
| 354 |
-
"display_name": "
|
| 355 |
"language": "python",
|
| 356 |
-
"name": "
|
| 357 |
},
|
| 358 |
"language_info": {
|
| 359 |
"codemirror_mode": {
|
|
@@ -365,7 +383,7 @@
|
|
| 365 |
"name": "python",
|
| 366 |
"nbconvert_exporter": "python",
|
| 367 |
"pygments_lexer": "ipython3",
|
| 368 |
-
"version": "3.
|
| 369 |
}
|
| 370 |
},
|
| 371 |
"nbformat": 4,
|
|
|
|
| 35 |
},
|
| 36 |
{
|
| 37 |
"cell_type": "code",
|
| 38 |
+
"execution_count": 3,
|
| 39 |
"metadata": {
|
| 40 |
"colab": {
|
| 41 |
"base_uri": "https://localhost:8080/",
|
|
|
|
| 53 |
"PILImage mode=RGB size=192x128"
|
| 54 |
]
|
| 55 |
},
|
| 56 |
+
"execution_count": 3,
|
| 57 |
"metadata": {},
|
| 58 |
"output_type": "execute_result"
|
| 59 |
}
|
|
|
|
| 66 |
},
|
| 67 |
{
|
| 68 |
"cell_type": "code",
|
| 69 |
+
"execution_count": 4,
|
| 70 |
"metadata": {},
|
| 71 |
"outputs": [],
|
| 72 |
"source": [
|
| 73 |
+
"#|export\n",
|
| 74 |
"import pathlib\n",
|
| 75 |
"temp = pathlib.PosixPath\n",
|
| 76 |
"pathlib.PosixPath = pathlib.WindowsPath"
|
|
|
|
| 78 |
},
|
| 79 |
{
|
| 80 |
"cell_type": "code",
|
| 81 |
+
"execution_count": 5,
|
| 82 |
"metadata": {
|
| 83 |
"id": "Ko1vxtuzACNo"
|
| 84 |
},
|
|
|
|
| 88 |
"learn = load_learner('bear_model.pkl')"
|
| 89 |
]
|
| 90 |
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "code",
|
| 93 |
+
"execution_count": 11,
|
| 94 |
+
"metadata": {},
|
| 95 |
+
"outputs": [],
|
| 96 |
+
"source": [
|
| 97 |
+
"#|export\n",
|
| 98 |
+
"pathlib.PosixPath = temp"
|
| 99 |
+
]
|
| 100 |
+
},
|
| 101 |
{
|
| 102 |
"cell_type": "code",
|
| 103 |
"execution_count": 7,
|
|
|
|
| 139 |
},
|
| 140 |
{
|
| 141 |
"data": {
|
| 142 |
+
"text/html": [
|
| 143 |
+
"\n",
|
| 144 |
+
" <div>\n",
|
| 145 |
+
" <progress value='0' class='' max='1' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 146 |
+
" 0.00% [0/1 00:00<?]\n",
|
| 147 |
+
" </div>\n",
|
| 148 |
+
" "
|
| 149 |
+
],
|
| 150 |
"text/plain": [
|
| 151 |
"<IPython.core.display.HTML object>"
|
| 152 |
]
|
|
|
|
| 157 |
{
|
| 158 |
"data": {
|
| 159 |
"text/plain": [
|
| 160 |
+
"('black', tensor(0), tensor([9.9997e-01, 2.5549e-05, 4.9422e-07]))"
|
| 161 |
]
|
| 162 |
},
|
| 163 |
"execution_count": 7,
|
|
|
|
| 171 |
},
|
| 172 |
{
|
| 173 |
"cell_type": "code",
|
| 174 |
+
"execution_count": 8,
|
| 175 |
"metadata": {
|
| 176 |
"id": "k8MzL29fm5wO"
|
| 177 |
},
|
|
|
|
| 187 |
},
|
| 188 |
{
|
| 189 |
"cell_type": "code",
|
| 190 |
+
"execution_count": 9,
|
| 191 |
"metadata": {
|
| 192 |
"colab": {
|
| 193 |
"base_uri": "https://localhost:8080/",
|
|
|
|
| 242 |
" 'Teddy': 4.94215839808021e-07}"
|
| 243 |
]
|
| 244 |
},
|
| 245 |
+
"execution_count": 9,
|
| 246 |
"metadata": {},
|
| 247 |
"output_type": "execute_result"
|
| 248 |
}
|
|
|
|
| 253 |
},
|
| 254 |
{
|
| 255 |
"cell_type": "code",
|
| 256 |
+
"execution_count": null,
|
| 257 |
"metadata": {
|
| 258 |
"colab": {
|
| 259 |
"base_uri": "https://localhost:8080/",
|
|
|
|
| 267 |
"name": "stdout",
|
| 268 |
"output_type": "stream",
|
| 269 |
"text": [
|
| 270 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
| 271 |
"\n",
|
| 272 |
"To create a public link, set `share=True` in `launch()`.\n"
|
| 273 |
]
|
|
|
|
| 276 |
"data": {
|
| 277 |
"text/plain": []
|
| 278 |
},
|
| 279 |
+
"execution_count": 10,
|
| 280 |
"metadata": {},
|
| 281 |
"output_type": "execute_result"
|
| 282 |
},
|
|
|
|
| 339 |
},
|
| 340 |
{
|
| 341 |
"cell_type": "code",
|
| 342 |
+
"execution_count": 12,
|
| 343 |
"metadata": {},
|
| 344 |
"outputs": [
|
| 345 |
{
|
|
|
|
| 369 |
"provenance": []
|
| 370 |
},
|
| 371 |
"kernelspec": {
|
| 372 |
+
"display_name": "bear_gh_env",
|
| 373 |
"language": "python",
|
| 374 |
+
"name": "python3"
|
| 375 |
},
|
| 376 |
"language_info": {
|
| 377 |
"codemirror_mode": {
|
|
|
|
| 383 |
"name": "python",
|
| 384 |
"nbconvert_exporter": "python",
|
| 385 |
"pygments_lexer": "ipython3",
|
| 386 |
+
"version": "3.11.9"
|
| 387 |
}
|
| 388 |
},
|
| 389 |
"nbformat": 4,
|
app.py
CHANGED
|
@@ -1,23 +1,31 @@
|
|
| 1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../Bearify_nb.ipynb.
|
| 2 |
|
| 3 |
# %% auto 0
|
| 4 |
-
__all__ = ['learn', 'categories', 'image', 'labels', 'examples', 'intf', 'classify_image']
|
| 5 |
|
| 6 |
# %% ../Bearify_nb.ipynb 2
|
| 7 |
from fastai.vision.all import *
|
| 8 |
import gradio as gr
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# %% ../Bearify_nb.ipynb 5
|
| 11 |
learn = load_learner('bear_model.pkl')
|
| 12 |
|
| 13 |
-
# %% ../Bearify_nb.ipynb
|
|
|
|
|
|
|
|
|
|
| 14 |
categories = ('Black', 'Grizzly', 'Teddy')
|
| 15 |
|
| 16 |
def classify_image(img):
|
| 17 |
pred, idx, probs = learn.predict(img)
|
| 18 |
return dict(zip(categories, map(float, probs)))
|
| 19 |
|
| 20 |
-
# %% ../Bearify_nb.ipynb
|
| 21 |
image = gr.Image()
|
| 22 |
labels = gr.Label()
|
| 23 |
examples = ['Images/teddy.jpg', 'Images/grizzly.jpg', 'Images/black.jpeg']
|
|
|
|
| 1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../Bearify_nb.ipynb.
|
| 2 |
|
| 3 |
# %% auto 0
|
| 4 |
+
__all__ = ['temp', 'learn', 'categories', 'image', 'labels', 'examples', 'intf', 'classify_image']
|
| 5 |
|
| 6 |
# %% ../Bearify_nb.ipynb 2
|
| 7 |
from fastai.vision.all import *
|
| 8 |
import gradio as gr
|
| 9 |
|
| 10 |
+
# %% ../Bearify_nb.ipynb 4
|
| 11 |
+
import pathlib
|
| 12 |
+
temp = pathlib.PosixPath
|
| 13 |
+
pathlib.PosixPath = pathlib.WindowsPath
|
| 14 |
+
|
| 15 |
# %% ../Bearify_nb.ipynb 5
|
| 16 |
learn = load_learner('bear_model.pkl')
|
| 17 |
|
| 18 |
+
# %% ../Bearify_nb.ipynb 6
|
| 19 |
+
pathlib.PosixPath = temp
|
| 20 |
+
|
| 21 |
+
# %% ../Bearify_nb.ipynb 8
|
| 22 |
categories = ('Black', 'Grizzly', 'Teddy')
|
| 23 |
|
| 24 |
def classify_image(img):
|
| 25 |
pred, idx, probs = learn.predict(img)
|
| 26 |
return dict(zip(categories, map(float, probs)))
|
| 27 |
|
| 28 |
+
# %% ../Bearify_nb.ipynb 10
|
| 29 |
image = gr.Image()
|
| 30 |
labels = gr.Label()
|
| 31 |
examples = ['Images/teddy.jpg', 'Images/grizzly.jpg', 'Images/black.jpeg']
|