Spaces:
Running
Running
File size: 6,443 Bytes
d14c764 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import spaces
# Load model and tokenizer
model_id = "openfree/Darwin-Qwen3-4B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
@spaces.GPU
def generate_response(
message,
history,
temperature=0.7,
max_new_tokens=512,
top_p=0.9,
repetition_penalty=1.1,
):
# Format conversation history
conversation = []
for user, assistant in history:
conversation.extend([
{"role": "user", "content": user},
{"role": "assistant", "content": assistant}
])
conversation.append({"role": "user", "content": message})
# Apply chat template if available
if hasattr(tokenizer, "apply_chat_template"):
text = tokenizer.apply_chat_template(
conversation,
tokenize=False,
add_generation_prompt=True
)
else:
# Fallback formatting
text = "\n".join([f"User: {message}" if i["role"] == "user"
else f"Assistant: {message}"
for i in conversation])
text += "\nAssistant: "
# Tokenize input
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=2048)
inputs = inputs.to(model.device)
# Set up streaming
streamer = TextIteratorStreamer(
tokenizer,
timeout=10.0,
skip_prompt=True,
skip_special_tokens=True
)
# Generation parameters
gen_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
# Start generation in separate thread
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
# Stream output
response = ""
for new_text in streamer:
response += new_text
yield response
thread.join()
# Create Gradio interface
with gr.Blocks(title="Darwin-Qwen3-4B Chat") as demo:
gr.Markdown(
"""
# 🌱 Darwin-Qwen3-4B Interactive Chat
Test the evolutionary merged model that combines the strengths of instruction-following and reasoning capabilities.
**Model**: [openfree/Darwin-Qwen3-4B](https://huggingface.co/openfree/Darwin-Qwen3-4B)
This model was created using the Darwin A2AP Enhanced v3.2 evolutionary algorithm, merging:
- Parent 1: Qwen/Qwen3-4B-Instruct-2507
- Parent 2: Qwen/Qwen3-4B-Thinking-2507
"""
)
chatbot = gr.Chatbot(
label="Chat History",
bubble_full_width=False,
height=400
)
with gr.Row():
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here and press Enter...",
lines=2,
scale=4
)
submit_btn = gr.Button("Send", scale=1, variant="primary")
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=1.5,
value=0.7,
step=0.1,
label="Temperature (higher = more creative)"
)
max_new_tokens = gr.Slider(
minimum=64,
maximum=2048,
value=512,
step=64,
label="Max New Tokens"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p (nucleus sampling)"
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=1.5,
value=1.1,
step=0.05,
label="Repetition Penalty"
)
with gr.Row():
clear_btn = gr.Button("Clear Chat", variant="secondary")
gr.Examples(
examples=[
"Explain quantum computing in simple terms.",
"Write a Python function to find prime numbers.",
"What are the key differences between machine learning and deep learning?",
"Suggest a healthy meal plan for a week.",
"How does photosynthesis work?",
],
inputs=msg,
label="Example Prompts"
)
# Event handlers
def user_submit(message, history):
return "", history + [[message, None]]
def bot_respond(history, temperature, max_new_tokens, top_p, repetition_penalty):
message = history[-1][0]
history[-1][1] = ""
for response in generate_response(
message,
history[:-1],
temperature,
max_new_tokens,
top_p,
repetition_penalty
):
history[-1][1] = response
yield history
msg.submit(
user_submit,
[msg, chatbot],
[msg, chatbot]
).then(
bot_respond,
[chatbot, temperature, max_new_tokens, top_p, repetition_penalty],
chatbot
)
submit_btn.click(
user_submit,
[msg, chatbot],
[msg, chatbot]
).then(
bot_respond,
[chatbot, temperature, max_new_tokens, top_p, repetition_penalty],
chatbot
)
clear_btn.click(lambda: None, None, chatbot, queue=False)
gr.Markdown(
"""
---
### About Darwin Project
The Darwin Project demonstrates a new paradigm in AI model creation through evolutionary algorithms.
This model showcases the fusion of different model capabilities at 1/10,000 the cost of traditional training.
**Key Features:**
- Automated model merging without manual hyperparameter tuning
- Multi-objective optimization (accuracy, robustness, generalization)
- 5,000+ generation evolution process
[GitHub](https://github.com/yourusername/darwin-project) | [Paper](https://arxiv.org/abs/xxxx.xxxxx) (Coming Soon)
"""
)
if __name__ == "__main__":
demo.queue().launch(share=True) |