Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,7 +9,6 @@ from threading import Thread
|
|
| 9 |
import base64
|
| 10 |
import shutil
|
| 11 |
import re
|
| 12 |
-
from io import BytesIO
|
| 13 |
|
| 14 |
import gradio as gr
|
| 15 |
import spaces
|
|
@@ -18,6 +17,7 @@ import numpy as np
|
|
| 18 |
from PIL import Image
|
| 19 |
import edge_tts
|
| 20 |
import trimesh
|
|
|
|
| 21 |
|
| 22 |
import supervision as sv
|
| 23 |
from ultralytics import YOLO as YOLODetector
|
|
@@ -36,17 +36,7 @@ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
| 36 |
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
| 37 |
from diffusers.utils import export_to_ply
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
import soundfile as sf
|
| 41 |
-
|
| 42 |
-
# Install additional dependencies if needed
|
| 43 |
-
os.system('pip install backoff')
|
| 44 |
-
|
| 45 |
-
# --- File validation constants ---
|
| 46 |
-
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp', '.gif']
|
| 47 |
-
AUDIO_EXTENSIONS = ['.wav', '.mp3', '.flac', '.ogg']
|
| 48 |
-
|
| 49 |
-
# --- Global constants and helper functions ---
|
| 50 |
|
| 51 |
MAX_SEED = np.iinfo(np.int32).max
|
| 52 |
|
|
@@ -56,26 +46,12 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 56 |
return seed
|
| 57 |
|
| 58 |
def glb_to_data_url(glb_path: str) -> str:
|
| 59 |
-
"""
|
| 60 |
-
Reads a GLB file from disk and returns a data URL with a base64 encoded representation.
|
| 61 |
-
"""
|
| 62 |
with open(glb_path, "rb") as f:
|
| 63 |
data = f.read()
|
| 64 |
b64_data = base64.b64encode(data).decode("utf-8")
|
| 65 |
return f"data:model/gltf-binary;base64,{b64_data}"
|
| 66 |
|
| 67 |
-
|
| 68 |
-
"""
|
| 69 |
-
Loads an audio file. If file is a string path, it reads directly.
|
| 70 |
-
Otherwise, assumes file is a file-like object.
|
| 71 |
-
"""
|
| 72 |
-
if isinstance(file, str):
|
| 73 |
-
audio, samplerate = sf.read(file)
|
| 74 |
-
else:
|
| 75 |
-
audio, samplerate = sf.read(BytesIO(file.read()))
|
| 76 |
-
return audio, samplerate
|
| 77 |
-
|
| 78 |
-
# --- Model class for Text-to-3D Generation (ShapE) ---
|
| 79 |
|
| 80 |
class Model:
|
| 81 |
def __init__(self):
|
|
@@ -131,7 +107,7 @@ class Model:
|
|
| 131 |
export_to_ply(images[0], ply_path.name)
|
| 132 |
return self.to_glb(ply_path.name)
|
| 133 |
|
| 134 |
-
#
|
| 135 |
|
| 136 |
from typing import Any, Optional
|
| 137 |
from smolagents.tools import Tool
|
|
@@ -139,43 +115,38 @@ import duckduckgo_search
|
|
| 139 |
|
| 140 |
class DuckDuckGoSearchTool(Tool):
|
| 141 |
name = "web_search"
|
| 142 |
-
description = "Performs a duckduckgo web search
|
| 143 |
-
inputs = {'query': {'type': 'string', 'description': 'The search query
|
| 144 |
output_type = "string"
|
| 145 |
|
| 146 |
def __init__(self, max_results=10, **kwargs):
|
| 147 |
super().__init__()
|
| 148 |
self.max_results = max_results
|
| 149 |
-
|
| 150 |
-
from duckduckgo_search import DDGS
|
| 151 |
-
except ImportError as e:
|
| 152 |
-
raise ImportError("Install duckduckgo-search via pip.") from e
|
| 153 |
self.ddgs = DDGS(**kwargs)
|
| 154 |
|
| 155 |
def forward(self, query: str) -> str:
|
| 156 |
results = self.ddgs.text(query, max_results=self.max_results)
|
| 157 |
if len(results) == 0:
|
| 158 |
raise Exception("No results found! Try a less restrictive query.")
|
| 159 |
-
postprocessed_results = [
|
|
|
|
|
|
|
| 160 |
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
|
| 161 |
|
| 162 |
class VisitWebpageTool(Tool):
|
| 163 |
name = "visit_webpage"
|
| 164 |
-
description = "Visits a webpage
|
| 165 |
-
inputs = {'url': {'type': 'string', 'description': 'The URL
|
| 166 |
output_type = "string"
|
| 167 |
|
| 168 |
def __init__(self, *args, **kwargs):
|
| 169 |
self.is_initialized = False
|
| 170 |
|
| 171 |
def forward(self, url: str) -> str:
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
from requests.exceptions import RequestException
|
| 176 |
-
from smolagents.utils import truncate_content
|
| 177 |
-
except ImportError as e:
|
| 178 |
-
raise ImportError("Install markdownify and requests via pip.") from e
|
| 179 |
try:
|
| 180 |
response = requests.get(url, timeout=20)
|
| 181 |
response.raise_for_status()
|
|
@@ -183,13 +154,11 @@ class VisitWebpageTool(Tool):
|
|
| 183 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
| 184 |
return truncate_content(markdown_content, 10000)
|
| 185 |
except requests.exceptions.Timeout:
|
| 186 |
-
return "The request timed out.
|
| 187 |
-
except RequestException as e:
|
| 188 |
-
return f"Error fetching
|
| 189 |
-
except Exception as e:
|
| 190 |
-
return f"Unexpected error: {str(e)}"
|
| 191 |
|
| 192 |
-
#
|
| 193 |
|
| 194 |
from openai import OpenAI
|
| 195 |
|
|
@@ -200,13 +169,11 @@ ragent_client = OpenAI(
|
|
| 200 |
)
|
| 201 |
|
| 202 |
SYSTEM_PROMPT = """
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
Task: {task}"
|
| 210 |
"""
|
| 211 |
|
| 212 |
def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95):
|
|
@@ -219,44 +186,23 @@ def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, t
|
|
| 219 |
messages.append({"role": "user", "content": prompt})
|
| 220 |
response = ""
|
| 221 |
stream = ragent_client.chat.completions.create(
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
)
|
| 229 |
for message in stream:
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
|
| 234 |
-
#
|
| 235 |
-
|
| 236 |
-
DESCRIPTION = """
|
| 237 |
-
# Agent Dino 🌠
|
| 238 |
-
"""
|
| 239 |
-
|
| 240 |
-
css = '''
|
| 241 |
-
h1 {
|
| 242 |
-
text-align: center;
|
| 243 |
-
display: block;
|
| 244 |
-
}
|
| 245 |
-
#duplicate-button {
|
| 246 |
-
margin: auto;
|
| 247 |
-
color: #fff;
|
| 248 |
-
background: #1565c0;
|
| 249 |
-
border-radius: 100vh;
|
| 250 |
-
}
|
| 251 |
-
'''
|
| 252 |
-
|
| 253 |
-
MAX_MAX_NEW_TOKENS = 2048
|
| 254 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 255 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 256 |
|
| 257 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 258 |
|
| 259 |
-
#
|
| 260 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
| 261 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 262 |
model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -266,12 +212,8 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 266 |
)
|
| 267 |
model.eval()
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
"en-US-GuyNeural",
|
| 272 |
-
]
|
| 273 |
-
|
| 274 |
-
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 275 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 276 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 277 |
MODEL_ID,
|
|
@@ -279,24 +221,20 @@ model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
| 279 |
torch_dtype=torch.float16
|
| 280 |
).to("cuda").eval()
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
|
|
|
|
| 294 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")
|
| 295 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 296 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 297 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 298 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
| 299 |
-
|
| 300 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 301 |
MODEL_ID_SD,
|
| 302 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
|
@@ -306,10 +244,33 @@ sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
| 306 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
| 307 |
if torch.cuda.is_available():
|
| 308 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
def save_image(img: Image.Image) -> str:
|
| 315 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
@@ -346,11 +307,11 @@ def generate_image_fn(
|
|
| 346 |
if use_resolution_binning:
|
| 347 |
options["use_resolution_binning"] = True
|
| 348 |
images = []
|
| 349 |
-
for i in range(0, num_images,
|
| 350 |
batch_options = options.copy()
|
| 351 |
-
batch_options["prompt"] = options["prompt"][i:i+
|
| 352 |
-
if "negative_prompt" in batch_options and batch_options["negative_prompt"]
|
| 353 |
-
batch_options["negative_prompt"] = options["negative_prompt"][i:i+
|
| 354 |
if device.type == "cuda":
|
| 355 |
with torch.autocast("cuda", dtype=torch.float16):
|
| 356 |
outputs = sd_pipe(**batch_options)
|
|
@@ -373,11 +334,6 @@ def generate_3d_fn(
|
|
| 373 |
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
| 374 |
return glb_path, seed
|
| 375 |
|
| 376 |
-
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
|
| 377 |
-
YOLO_CHECKPOINT_NAME = "images/demo.pt"
|
| 378 |
-
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
|
| 379 |
-
yolo_detector = YOLODetector(yolo_model_path)
|
| 380 |
-
|
| 381 |
def detect_objects(image: np.ndarray):
|
| 382 |
results = yolo_detector(image, verbose=False)[0]
|
| 383 |
detections = sv.Detections.from_ultralytics(results).with_nms()
|
|
@@ -388,57 +344,7 @@ def detect_objects(image: np.ndarray):
|
|
| 388 |
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
| 389 |
return Image.fromarray(annotated_image)
|
| 390 |
|
| 391 |
-
#
|
| 392 |
-
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
|
| 393 |
-
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
|
| 394 |
-
phi4_model = AutoModelForCausalLM.from_pretrained(
|
| 395 |
-
phi4_model_path,
|
| 396 |
-
device_map="auto",
|
| 397 |
-
torch_dtype="auto",
|
| 398 |
-
trust_remote_code=True,
|
| 399 |
-
_attn_implementation="eager",
|
| 400 |
-
)
|
| 401 |
-
|
| 402 |
-
def process_phi4(input_type: str, file: str, question: str, max_new_tokens: int = 200):
|
| 403 |
-
"""
|
| 404 |
-
Process an image or audio input with the Phi-4 multimodal model.
|
| 405 |
-
Expects input_type to be either 'image' or 'audio' and file is a file path.
|
| 406 |
-
"""
|
| 407 |
-
user_prompt = '<|user|>'
|
| 408 |
-
assistant_prompt = '<|assistant|>'
|
| 409 |
-
prompt_suffix = '<|end|>'
|
| 410 |
-
|
| 411 |
-
if not file or not question:
|
| 412 |
-
yield "Please upload a file and provide a question."
|
| 413 |
-
return
|
| 414 |
-
|
| 415 |
-
try:
|
| 416 |
-
if input_type == "image":
|
| 417 |
-
prompt = f'{user_prompt}<|image_1|>{question}{prompt_suffix}{assistant_prompt}'
|
| 418 |
-
image = load_image(file)
|
| 419 |
-
inputs = phi4_processor(text=prompt, images=image, return_tensors='pt').to(phi4_model.device)
|
| 420 |
-
elif input_type == "audio":
|
| 421 |
-
prompt = f'{user_prompt}<|audio_1|>{question}{prompt_suffix}{assistant_prompt}'
|
| 422 |
-
audio, samplerate = load_audio_file(file)
|
| 423 |
-
inputs = phi4_processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(phi4_model.device)
|
| 424 |
-
else:
|
| 425 |
-
yield "Invalid input type selected. Use 'image' or 'audio'."
|
| 426 |
-
return
|
| 427 |
-
except Exception as e:
|
| 428 |
-
yield f"Error loading file: {str(e)}"
|
| 429 |
-
return
|
| 430 |
-
|
| 431 |
-
streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
|
| 432 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 433 |
-
thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs)
|
| 434 |
-
thread.start()
|
| 435 |
-
buffer = ""
|
| 436 |
-
yield "🤔 Thinking..."
|
| 437 |
-
for new_text in streamer:
|
| 438 |
-
buffer += new_text
|
| 439 |
-
buffer = buffer.replace("<|im_end|>", "")
|
| 440 |
-
time.sleep(0.01)
|
| 441 |
-
yield buffer
|
| 442 |
|
| 443 |
@spaces.GPU
|
| 444 |
def generate(
|
|
@@ -450,58 +356,13 @@ def generate(
|
|
| 450 |
top_k: int = 50,
|
| 451 |
repetition_penalty: float = 1.2,
|
| 452 |
):
|
| 453 |
-
"""
|
| 454 |
-
Generates chatbot responses with support for multimodal input and special commands.
|
| 455 |
-
Special commands include:
|
| 456 |
-
- "@tts1" or "@tts2": Text-to-speech.
|
| 457 |
-
- "@image": Image generation using the SDXL pipeline.
|
| 458 |
-
- "@3d": 3D model generation using the ShapE pipeline.
|
| 459 |
-
- "@web": Web search or webpage visit.
|
| 460 |
-
- "@ragent": Reasoning chain using Llama mode.
|
| 461 |
-
- "@yolo": Object detection using YOLO.
|
| 462 |
-
- "@phi4": Processes image or audio inputs with the Phi-4 model and streams text output.
|
| 463 |
-
"""
|
| 464 |
text = input_dict["text"]
|
| 465 |
files = input_dict.get("files", [])
|
| 466 |
|
| 467 |
-
# ---
|
| 468 |
-
if text.strip().lower().startswith("@phi4"):
|
| 469 |
-
parts = text.strip().split(maxsplit=2)
|
| 470 |
-
if len(parts) < 3:
|
| 471 |
-
yield "Error: Please provide input type and a question. Format: '@phi4 [image|audio] <your question>'"
|
| 472 |
-
return
|
| 473 |
-
input_type = parts[1].lower()
|
| 474 |
-
question = parts[2]
|
| 475 |
-
|
| 476 |
-
if not files or len(files) == 0:
|
| 477 |
-
yield "Error: Please attach an image or audio file for Phi-4 processing."
|
| 478 |
-
return
|
| 479 |
-
|
| 480 |
-
if len(files) > 1:
|
| 481 |
-
yield "Warning: Multiple files attached. Only the first file will be processed."
|
| 482 |
-
|
| 483 |
-
file_input = files[0] # This is a string path from gr.MultimodalTextbox
|
| 484 |
-
|
| 485 |
-
extension = os.path.splitext(file_input)[1].lower()
|
| 486 |
-
if input_type == "image" and extension not in IMAGE_EXTENSIONS:
|
| 487 |
-
yield f"Error: Attached file is not an image. Expected extensions: {', '.join(IMAGE_EXTENSIONS)}"
|
| 488 |
-
return
|
| 489 |
-
elif input_type == "audio" and extension not in AUDIO_EXTENSIONS:
|
| 490 |
-
yield f"Error: Attached file is not an audio file. Expected extensions: {', '.join(AUDIO_EXTENSIONS)}"
|
| 491 |
-
return
|
| 492 |
-
|
| 493 |
-
yield "🔄 Processing multimodal input with Phi-4..."
|
| 494 |
-
try:
|
| 495 |
-
for partial in process_phi4(input_type, file_input, question):
|
| 496 |
-
yield partial
|
| 497 |
-
except Exception as e:
|
| 498 |
-
yield f"Error processing file: {str(e)}"
|
| 499 |
-
return
|
| 500 |
-
|
| 501 |
-
# --- Other branches remain unchanged ---
|
| 502 |
if text.strip().lower().startswith("@3d"):
|
| 503 |
prompt = text[len("@3d"):].strip()
|
| 504 |
-
yield "🌀
|
| 505 |
glb_path, used_seed = generate_3d_fn(
|
| 506 |
prompt=prompt,
|
| 507 |
seed=1,
|
|
@@ -518,25 +379,20 @@ def generate(
|
|
| 518 |
yield gr.File(new_filepath)
|
| 519 |
return
|
| 520 |
|
|
|
|
| 521 |
if text.strip().lower().startswith("@image"):
|
| 522 |
prompt = text[len("@image"):].strip()
|
| 523 |
yield "🪧 Generating image..."
|
| 524 |
image_paths, used_seed = generate_image_fn(
|
| 525 |
prompt=prompt,
|
| 526 |
-
negative_prompt="",
|
| 527 |
-
use_negative_prompt=False,
|
| 528 |
seed=1,
|
| 529 |
-
width=1024,
|
| 530 |
-
height=1024,
|
| 531 |
-
guidance_scale=3,
|
| 532 |
-
num_inference_steps=25,
|
| 533 |
randomize_seed=True,
|
| 534 |
-
use_resolution_binning=True,
|
| 535 |
num_images=1,
|
| 536 |
)
|
| 537 |
yield gr.Image(image_paths[0])
|
| 538 |
return
|
| 539 |
|
|
|
|
| 540 |
if text.strip().lower().startswith("@web"):
|
| 541 |
web_command = text[len("@web"):].strip()
|
| 542 |
if web_command.lower().startswith("visit"):
|
|
@@ -547,30 +403,29 @@ def generate(
|
|
| 547 |
yield content
|
| 548 |
else:
|
| 549 |
query = web_command
|
| 550 |
-
yield "🧤 Performing
|
| 551 |
searcher = DuckDuckGoSearchTool()
|
| 552 |
results = searcher.forward(query)
|
| 553 |
yield results
|
| 554 |
return
|
| 555 |
|
|
|
|
| 556 |
if text.strip().lower().startswith("@ragent"):
|
| 557 |
prompt = text[len("@ragent"):].strip()
|
| 558 |
-
yield "📝 Initiating reasoning chain
|
| 559 |
for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)):
|
| 560 |
yield partial
|
| 561 |
return
|
| 562 |
|
|
|
|
| 563 |
if text.strip().lower().startswith("@yolo"):
|
| 564 |
-
yield "🔍 Running object detection
|
| 565 |
if not files or len(files) == 0:
|
| 566 |
-
yield "Error: Please attach an image for YOLO
|
| 567 |
return
|
| 568 |
input_file = files[0]
|
| 569 |
try:
|
| 570 |
-
|
| 571 |
-
pil_image = Image.open(input_file)
|
| 572 |
-
else:
|
| 573 |
-
pil_image = Image.open(input_file)
|
| 574 |
except Exception as e:
|
| 575 |
yield f"Error loading image: {str(e)}"
|
| 576 |
return
|
|
@@ -579,9 +434,63 @@ def generate(
|
|
| 579 |
yield gr.Image(result_img)
|
| 580 |
return
|
| 581 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 582 |
tts_prefix = "@tts"
|
| 583 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
| 584 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
|
| 585 |
if is_tts and voice_index:
|
| 586 |
voice = TTS_VOICES[voice_index - 1]
|
| 587 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
|
@@ -591,13 +500,9 @@ def generate(
|
|
| 591 |
text = text.replace(tts_prefix, "").strip()
|
| 592 |
conversation = clean_chat_history(chat_history)
|
| 593 |
conversation.append({"role": "user", "content": text})
|
|
|
|
| 594 |
if files:
|
| 595 |
-
|
| 596 |
-
images = [load_image(file) for file in files]
|
| 597 |
-
elif len(files) == 1:
|
| 598 |
-
images = [load_image(files[0])]
|
| 599 |
-
else:
|
| 600 |
-
images = []
|
| 601 |
messages = [{
|
| 602 |
"role": "user",
|
| 603 |
"content": [
|
|
@@ -611,6 +516,7 @@ def generate(
|
|
| 611 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 612 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
| 613 |
thread.start()
|
|
|
|
| 614 |
buffer = ""
|
| 615 |
yield "🤔 Thinking..."
|
| 616 |
for new_text in streamer:
|
|
@@ -622,7 +528,7 @@ def generate(
|
|
| 622 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 623 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 624 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 625 |
-
gr.Warning(f"Trimmed input
|
| 626 |
input_ids = input_ids.to(model.device)
|
| 627 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
| 628 |
generation_kwargs = {
|
|
@@ -638,43 +544,63 @@ def generate(
|
|
| 638 |
}
|
| 639 |
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 640 |
t.start()
|
|
|
|
| 641 |
outputs = []
|
| 642 |
for new_text in streamer:
|
| 643 |
outputs.append(new_text)
|
| 644 |
yield "".join(outputs)
|
|
|
|
| 645 |
final_response = "".join(outputs)
|
| 646 |
yield final_response
|
|
|
|
| 647 |
if is_tts and voice:
|
| 648 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 649 |
yield gr.Audio(output_file, autoplay=True)
|
| 650 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 651 |
demo = gr.ChatInterface(
|
| 652 |
fn=generate,
|
| 653 |
additional_inputs=[
|
| 654 |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
| 655 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
| 656 |
-
gr.Slider(label="Top-p
|
| 657 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
| 658 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
| 659 |
],
|
| 660 |
examples=[
|
| 661 |
-
[{"text": "@phi4 Solve the problem", "files": ["examples/math.webp"]}],
|
| 662 |
-
[{"text": "@phi4 Transcribe the audio to text.", "files": ["examples/harvard.wav"]}],
|
| 663 |
["@tts2 What causes rainbows to form?"],
|
| 664 |
["@image Chocolate dripping from a donut"],
|
| 665 |
["@3d A birthday cupcake with cherry"],
|
| 666 |
[{"text": "Summarize the letter", "files": ["examples/1.png"]}],
|
| 667 |
[{"text": "@yolo", "files": ["examples/yolo.jpeg"]}],
|
| 668 |
-
["@
|
| 669 |
-
["@web Is Grok-3 Beats DeepSeek-R1 at Reasoning
|
| 670 |
["@tts1 Explain Tower of Hanoi"],
|
|
|
|
|
|
|
| 671 |
],
|
| 672 |
cache_examples=False,
|
| 673 |
type="messages",
|
| 674 |
description=DESCRIPTION,
|
| 675 |
css=css,
|
| 676 |
fill_height=True,
|
| 677 |
-
textbox=gr.MultimodalTextbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 678 |
stop_btn="Stop Generation",
|
| 679 |
multimodal=True,
|
| 680 |
)
|
|
|
|
| 9 |
import base64
|
| 10 |
import shutil
|
| 11 |
import re
|
|
|
|
| 12 |
|
| 13 |
import gradio as gr
|
| 14 |
import spaces
|
|
|
|
| 17 |
from PIL import Image
|
| 18 |
import edge_tts
|
| 19 |
import trimesh
|
| 20 |
+
import soundfile as sf # Added for audio processing with Phi-4
|
| 21 |
|
| 22 |
import supervision as sv
|
| 23 |
from ultralytics import YOLO as YOLODetector
|
|
|
|
| 36 |
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
| 37 |
from diffusers.utils import export_to_ply
|
| 38 |
|
| 39 |
+
# Global constants and helper functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
MAX_SEED = np.iinfo(np.int32).max
|
| 42 |
|
|
|
|
| 46 |
return seed
|
| 47 |
|
| 48 |
def glb_to_data_url(glb_path: str) -> str:
|
|
|
|
|
|
|
|
|
|
| 49 |
with open(glb_path, "rb") as f:
|
| 50 |
data = f.read()
|
| 51 |
b64_data = base64.b64encode(data).decode("utf-8")
|
| 52 |
return f"data:model/gltf-binary;base64,{b64_data}"
|
| 53 |
|
| 54 |
+
# Model class for Text-to-3D Generation (ShapE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
class Model:
|
| 57 |
def __init__(self):
|
|
|
|
| 107 |
export_to_ply(images[0], ply_path.name)
|
| 108 |
return self.to_glb(ply_path.name)
|
| 109 |
|
| 110 |
+
# Web Tools using DuckDuckGo and smolagents
|
| 111 |
|
| 112 |
from typing import Any, Optional
|
| 113 |
from smolagents.tools import Tool
|
|
|
|
| 115 |
|
| 116 |
class DuckDuckGoSearchTool(Tool):
|
| 117 |
name = "web_search"
|
| 118 |
+
description = "Performs a duckduckgo web search and returns the top results."
|
| 119 |
+
inputs = {'query': {'type': 'string', 'description': 'The search query.'}}
|
| 120 |
output_type = "string"
|
| 121 |
|
| 122 |
def __init__(self, max_results=10, **kwargs):
|
| 123 |
super().__init__()
|
| 124 |
self.max_results = max_results
|
| 125 |
+
from duckduckgo_search import DDGS
|
|
|
|
|
|
|
|
|
|
| 126 |
self.ddgs = DDGS(**kwargs)
|
| 127 |
|
| 128 |
def forward(self, query: str) -> str:
|
| 129 |
results = self.ddgs.text(query, max_results=self.max_results)
|
| 130 |
if len(results) == 0:
|
| 131 |
raise Exception("No results found! Try a less restrictive query.")
|
| 132 |
+
postprocessed_results = [
|
| 133 |
+
f"[{result['title']}]({result['href']})\n{result['body']}" for result in results
|
| 134 |
+
]
|
| 135 |
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
|
| 136 |
|
| 137 |
class VisitWebpageTool(Tool):
|
| 138 |
name = "visit_webpage"
|
| 139 |
+
description = "Visits a webpage and returns its content as markdown."
|
| 140 |
+
inputs = {'url': {'type': 'string', 'description': 'The URL to visit.'}}
|
| 141 |
output_type = "string"
|
| 142 |
|
| 143 |
def __init__(self, *args, **kwargs):
|
| 144 |
self.is_initialized = False
|
| 145 |
|
| 146 |
def forward(self, url: str) -> str:
|
| 147 |
+
import requests
|
| 148 |
+
from markdownify import markdownify
|
| 149 |
+
from smolagents.utils import truncate_content
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
try:
|
| 151 |
response = requests.get(url, timeout=20)
|
| 152 |
response.raise_for_status()
|
|
|
|
| 154 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
| 155 |
return truncate_content(markdown_content, 10000)
|
| 156 |
except requests.exceptions.Timeout:
|
| 157 |
+
return "The request timed out."
|
| 158 |
+
except requests.exceptions.RequestException as e:
|
| 159 |
+
return f"Error fetching webpage: {str(e)}"
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
# rAgent Reasoning using Llama mode OpenAI
|
| 162 |
|
| 163 |
from openai import OpenAI
|
| 164 |
|
|
|
|
| 169 |
)
|
| 170 |
|
| 171 |
SYSTEM_PROMPT = """
|
| 172 |
+
"You are an expert assistant who solves tasks using Python code. Follow these steps:
|
| 173 |
+
1. **Thought**: Explain your reasoning and plan.
|
| 174 |
+
2. **Code**: Write Python code to implement your solution.
|
| 175 |
+
3. **Observation**: Analyze the output and summarize results.
|
| 176 |
+
4. **Final Answer**: Provide a concise conclusion."
|
|
|
|
|
|
|
| 177 |
"""
|
| 178 |
|
| 179 |
def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95):
|
|
|
|
| 186 |
messages.append({"role": "user", "content": prompt})
|
| 187 |
response = ""
|
| 188 |
stream = ragent_client.chat.completions.create(
|
| 189 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 190 |
+
max_tokens=max_tokens,
|
| 191 |
+
stream=True,
|
| 192 |
+
temperature=temperature,
|
| 193 |
+
top_p=top_p,
|
| 194 |
+
messages=messages,
|
| 195 |
)
|
| 196 |
for message in stream:
|
| 197 |
+
token = message.choices[0].delta.content
|
| 198 |
+
response += token
|
| 199 |
+
yield response
|
| 200 |
|
| 201 |
+
# Load Models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 204 |
|
| 205 |
+
# Text-only model
|
| 206 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
| 207 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 208 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 212 |
)
|
| 213 |
model.eval()
|
| 214 |
|
| 215 |
+
# Multimodal model (Qwen2-VL)
|
| 216 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 218 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 219 |
MODEL_ID,
|
|
|
|
| 221 |
torch_dtype=torch.float16
|
| 222 |
).to("cuda").eval()
|
| 223 |
|
| 224 |
+
# Phi-4 Multimodal Model
|
| 225 |
+
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
|
| 226 |
+
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
|
| 227 |
+
phi4_model = AutoModelForCausalLM.from_pretrained(
|
| 228 |
+
phi4_model_path,
|
| 229 |
+
device_map="auto",
|
| 230 |
+
torch_dtype="auto",
|
| 231 |
+
trust_remote_code=True,
|
| 232 |
+
_attn_implementation="eager",
|
| 233 |
+
)
|
| 234 |
+
phi4_model.eval()
|
| 235 |
|
| 236 |
+
# Stable Diffusion XL Pipeline
|
| 237 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 239 |
MODEL_ID_SD,
|
| 240 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
|
|
|
| 244 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
| 245 |
if torch.cuda.is_available():
|
| 246 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
| 247 |
+
|
| 248 |
+
# YOLO Object Detection
|
| 249 |
+
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
|
| 250 |
+
YOLO_CHECKPOINT_NAME = "images/demo.pt"
|
| 251 |
+
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
|
| 252 |
+
yolo_detector = YOLODetector(yolo_model_path)
|
| 253 |
+
|
| 254 |
+
# TTS Voices
|
| 255 |
+
TTS_VOICES = ["en-US-JennyNeural", "en-US-GuyNeural"]
|
| 256 |
+
|
| 257 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 258 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 259 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 260 |
+
|
| 261 |
+
# Utility Functions
|
| 262 |
+
|
| 263 |
+
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
| 264 |
+
communicate = edge_tts.Communicate(text, voice)
|
| 265 |
+
await communicate.save(output_file)
|
| 266 |
+
return output_file
|
| 267 |
+
|
| 268 |
+
def clean_chat_history(chat_history):
|
| 269 |
+
cleaned = []
|
| 270 |
+
for msg in chat_history:
|
| 271 |
+
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
| 272 |
+
cleaned.append(msg)
|
| 273 |
+
return cleaned
|
| 274 |
|
| 275 |
def save_image(img: Image.Image) -> str:
|
| 276 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
|
| 307 |
if use_resolution_binning:
|
| 308 |
options["use_resolution_binning"] = True
|
| 309 |
images = []
|
| 310 |
+
for i in range(0, num_images, 1): # Simplified batching
|
| 311 |
batch_options = options.copy()
|
| 312 |
+
batch_options["prompt"] = options["prompt"][i:i+1]
|
| 313 |
+
if "negative_prompt" in batch_options and batch_options["negative_prompt"]:
|
| 314 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+1]
|
| 315 |
if device.type == "cuda":
|
| 316 |
with torch.autocast("cuda", dtype=torch.float16):
|
| 317 |
outputs = sd_pipe(**batch_options)
|
|
|
|
| 334 |
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
| 335 |
return glb_path, seed
|
| 336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
def detect_objects(image: np.ndarray):
|
| 338 |
results = yolo_detector(image, verbose=False)[0]
|
| 339 |
detections = sv.Detections.from_ultralytics(results).with_nms()
|
|
|
|
| 344 |
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
| 345 |
return Image.fromarray(annotated_image)
|
| 346 |
|
| 347 |
+
# Chat Generation Function with @phi4 Added
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
@spaces.GPU
|
| 350 |
def generate(
|
|
|
|
| 356 |
top_k: int = 50,
|
| 357 |
repetition_penalty: float = 1.2,
|
| 358 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
text = input_dict["text"]
|
| 360 |
files = input_dict.get("files", [])
|
| 361 |
|
| 362 |
+
# --- 3D Generation ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
if text.strip().lower().startswith("@3d"):
|
| 364 |
prompt = text[len("@3d"):].strip()
|
| 365 |
+
yield "🌀 Generating 3D mesh GLB file..."
|
| 366 |
glb_path, used_seed = generate_3d_fn(
|
| 367 |
prompt=prompt,
|
| 368 |
seed=1,
|
|
|
|
| 379 |
yield gr.File(new_filepath)
|
| 380 |
return
|
| 381 |
|
| 382 |
+
# --- Image Generation ---
|
| 383 |
if text.strip().lower().startswith("@image"):
|
| 384 |
prompt = text[len("@image"):].strip()
|
| 385 |
yield "🪧 Generating image..."
|
| 386 |
image_paths, used_seed = generate_image_fn(
|
| 387 |
prompt=prompt,
|
|
|
|
|
|
|
| 388 |
seed=1,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
randomize_seed=True,
|
|
|
|
| 390 |
num_images=1,
|
| 391 |
)
|
| 392 |
yield gr.Image(image_paths[0])
|
| 393 |
return
|
| 394 |
|
| 395 |
+
# --- Web Search/Visit ---
|
| 396 |
if text.strip().lower().startswith("@web"):
|
| 397 |
web_command = text[len("@web"):].strip()
|
| 398 |
if web_command.lower().startswith("visit"):
|
|
|
|
| 403 |
yield content
|
| 404 |
else:
|
| 405 |
query = web_command
|
| 406 |
+
yield "🧤 Performing web search..."
|
| 407 |
searcher = DuckDuckGoSearchTool()
|
| 408 |
results = searcher.forward(query)
|
| 409 |
yield results
|
| 410 |
return
|
| 411 |
|
| 412 |
+
# --- rAgent Reasoning ---
|
| 413 |
if text.strip().lower().startswith("@ragent"):
|
| 414 |
prompt = text[len("@ragent"):].strip()
|
| 415 |
+
yield "📝 Initiating reasoning chain..."
|
| 416 |
for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)):
|
| 417 |
yield partial
|
| 418 |
return
|
| 419 |
|
| 420 |
+
# --- YOLO Object Detection ---
|
| 421 |
if text.strip().lower().startswith("@yolo"):
|
| 422 |
+
yield "🔍 Running object detection..."
|
| 423 |
if not files or len(files) == 0:
|
| 424 |
+
yield "Error: Please attach an image for YOLO."
|
| 425 |
return
|
| 426 |
input_file = files[0]
|
| 427 |
try:
|
| 428 |
+
pil_image = Image.open(input_file)
|
|
|
|
|
|
|
|
|
|
| 429 |
except Exception as e:
|
| 430 |
yield f"Error loading image: {str(e)}"
|
| 431 |
return
|
|
|
|
| 434 |
yield gr.Image(result_img)
|
| 435 |
return
|
| 436 |
|
| 437 |
+
# --- Phi-4 Multimodal Branch ---
|
| 438 |
+
if text.strip().lower().startswith("@phi4"):
|
| 439 |
+
parts = text[len("@phi4"):].strip().split(maxsplit=1)
|
| 440 |
+
if len(parts) < 2:
|
| 441 |
+
yield "Error: Specify input type and question, e.g., '@phi4 image What is this?'"
|
| 442 |
+
return
|
| 443 |
+
input_type = parts[0].lower()
|
| 444 |
+
question = parts[1]
|
| 445 |
+
|
| 446 |
+
if input_type not in ["image", "audio"]:
|
| 447 |
+
yield "Error: Input type must be 'image' or 'audio'."
|
| 448 |
+
return
|
| 449 |
+
|
| 450 |
+
if not files or len(files) == 0:
|
| 451 |
+
yield "Error: Please attach a file for Phi-4 processing."
|
| 452 |
+
return
|
| 453 |
+
|
| 454 |
+
if len(files) > 1:
|
| 455 |
+
yield "Warning: Multiple files attached. Using the first one."
|
| 456 |
+
|
| 457 |
+
file_input = files[0]
|
| 458 |
+
|
| 459 |
+
try:
|
| 460 |
+
if input_type == "image":
|
| 461 |
+
prompt = f'<|user|><|image_1|>{question}<|end|><|assistant|>'
|
| 462 |
+
image = Image.open(file_input)
|
| 463 |
+
inputs = phi4_processor(text=prompt, images=image, return_tensors='pt').to(phi4_model.device)
|
| 464 |
+
elif input_type == "audio":
|
| 465 |
+
prompt = f'<|user|><|audio_1|>{question}<|end|><|assistant|>'
|
| 466 |
+
audio, samplerate = sf.read(file_input)
|
| 467 |
+
inputs = phi4_processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(phi4_model.device)
|
| 468 |
+
|
| 469 |
+
streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
|
| 470 |
+
generation_kwargs = {
|
| 471 |
+
**inputs,
|
| 472 |
+
"streamer": streamer,
|
| 473 |
+
"max_new_tokens": max_new_tokens,
|
| 474 |
+
}
|
| 475 |
+
thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs)
|
| 476 |
+
thread.start()
|
| 477 |
+
|
| 478 |
+
buffer = ""
|
| 479 |
+
yield "🤔 Thinking..."
|
| 480 |
+
for new_text in streamer:
|
| 481 |
+
buffer += new_text
|
| 482 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 483 |
+
time.sleep(0.01)
|
| 484 |
+
yield buffer
|
| 485 |
+
except Exception as e:
|
| 486 |
+
yield f"Error processing file: {str(e)}"
|
| 487 |
+
return
|
| 488 |
+
|
| 489 |
+
# --- Text and TTS Branch ---
|
| 490 |
tts_prefix = "@tts"
|
| 491 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
| 492 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
| 493 |
+
|
| 494 |
if is_tts and voice_index:
|
| 495 |
voice = TTS_VOICES[voice_index - 1]
|
| 496 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
|
|
|
| 500 |
text = text.replace(tts_prefix, "").strip()
|
| 501 |
conversation = clean_chat_history(chat_history)
|
| 502 |
conversation.append({"role": "user", "content": text})
|
| 503 |
+
|
| 504 |
if files:
|
| 505 |
+
images = [load_image(image) for image in files]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
messages = [{
|
| 507 |
"role": "user",
|
| 508 |
"content": [
|
|
|
|
| 516 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 517 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
| 518 |
thread.start()
|
| 519 |
+
|
| 520 |
buffer = ""
|
| 521 |
yield "🤔 Thinking..."
|
| 522 |
for new_text in streamer:
|
|
|
|
| 528 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 529 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 530 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 531 |
+
gr.Warning(f"Trimmed input to {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 532 |
input_ids = input_ids.to(model.device)
|
| 533 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
| 534 |
generation_kwargs = {
|
|
|
|
| 544 |
}
|
| 545 |
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 546 |
t.start()
|
| 547 |
+
|
| 548 |
outputs = []
|
| 549 |
for new_text in streamer:
|
| 550 |
outputs.append(new_text)
|
| 551 |
yield "".join(outputs)
|
| 552 |
+
|
| 553 |
final_response = "".join(outputs)
|
| 554 |
yield final_response
|
| 555 |
+
|
| 556 |
if is_tts and voice:
|
| 557 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 558 |
yield gr.Audio(output_file, autoplay=True)
|
| 559 |
|
| 560 |
+
# Gradio Interface
|
| 561 |
+
|
| 562 |
+
DESCRIPTION = """
|
| 563 |
+
# Agent Dino 🌠
|
| 564 |
+
Multimodal chatbot with text, image, audio, 3D generation, web search, reasoning, and object detection.
|
| 565 |
+
"""
|
| 566 |
+
|
| 567 |
+
css = '''
|
| 568 |
+
h1 { text-align: center; }
|
| 569 |
+
#duplicate-button { margin: auto; color: #fff; background: #1565c0; border-radius: 100vh; }
|
| 570 |
+
'''
|
| 571 |
+
|
| 572 |
demo = gr.ChatInterface(
|
| 573 |
fn=generate,
|
| 574 |
additional_inputs=[
|
| 575 |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
| 576 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
| 577 |
+
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
| 578 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
| 579 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
| 580 |
],
|
| 581 |
examples=[
|
|
|
|
|
|
|
| 582 |
["@tts2 What causes rainbows to form?"],
|
| 583 |
["@image Chocolate dripping from a donut"],
|
| 584 |
["@3d A birthday cupcake with cherry"],
|
| 585 |
[{"text": "Summarize the letter", "files": ["examples/1.png"]}],
|
| 586 |
[{"text": "@yolo", "files": ["examples/yolo.jpeg"]}],
|
| 587 |
+
["@rAgent Explain how a binary search algorithm works."],
|
| 588 |
+
["@web Is Grok-3 Beats DeepSeek-R1 at Reasoning?"],
|
| 589 |
["@tts1 Explain Tower of Hanoi"],
|
| 590 |
+
[{"text": "@phi4 image What is shown in this image?", "files": ["examples/image.jpg"]}],
|
| 591 |
+
[{"text": "@phi4 audio Transcribe this audio.", "files": ["examples/audio.wav"]}],
|
| 592 |
],
|
| 593 |
cache_examples=False,
|
| 594 |
type="messages",
|
| 595 |
description=DESCRIPTION,
|
| 596 |
css=css,
|
| 597 |
fill_height=True,
|
| 598 |
+
textbox=gr.MultimodalTextbox(
|
| 599 |
+
label="Query Input",
|
| 600 |
+
file_types=["image", "audio"],
|
| 601 |
+
file_count="multiple",
|
| 602 |
+
placeholder="@tts1-♀, @tts2-♂, @image-image gen, @3d-3d mesh gen, @rAgent-coding, @web-websearch, @yolo-object detection, @phi4-multimodal, default-{text gen}{image-text-text}",
|
| 603 |
+
),
|
| 604 |
stop_btn="Stop Generation",
|
| 605 |
multimodal=True,
|
| 606 |
)
|