Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import spaces | |
| import os | |
| from typing import List, Dict, Any, Optional, Tuple | |
| import hashlib | |
| from datetime import datetime | |
| import numpy as np | |
| from transformers import pipeline, TextIteratorStreamer | |
| import torch | |
| from threading import Thread | |
| import re | |
| # PDF μ²λ¦¬ λΌμ΄λΈλ¬λ¦¬ | |
| try: | |
| import fitz # PyMuPDF | |
| PDF_AVAILABLE = True | |
| except ImportError: | |
| PDF_AVAILABLE = False | |
| print("β οΈ PyMuPDF not installed. Install with: pip install pymupdf") | |
| try: | |
| from sentence_transformers import SentenceTransformer | |
| ST_AVAILABLE = True | |
| except ImportError: | |
| ST_AVAILABLE = False | |
| print("β οΈ Sentence Transformers not installed. Install with: pip install sentence-transformers") | |
| # Custom CSS | |
| custom_css = """ | |
| .gradio-container { | |
| background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); | |
| min-height: 100vh; | |
| font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif; | |
| } | |
| .main-container { | |
| background: rgba(255, 255, 255, 0.98); | |
| border-radius: 16px; | |
| padding: 24px; | |
| box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); | |
| border: 1px solid rgba(0, 0, 0, 0.05); | |
| margin: 12px; | |
| } | |
| .pdf-status { | |
| padding: 12px 16px; | |
| border-radius: 12px; | |
| margin: 12px 0; | |
| font-size: 0.95rem; | |
| font-weight: 500; | |
| } | |
| .pdf-success { | |
| background: linear-gradient(135deg, #d4edda 0%, #c3e6cb 100%); | |
| border: 1px solid #b1dfbb; | |
| color: #155724; | |
| } | |
| .pdf-error { | |
| background: linear-gradient(135deg, #f8d7da 0%, #f5c6cb 100%); | |
| border: 1px solid #f1aeb5; | |
| color: #721c24; | |
| } | |
| .pdf-info { | |
| background: linear-gradient(135deg, #d1ecf1 0%, #bee5eb 100%); | |
| border: 1px solid #9ec5d8; | |
| color: #0c5460; | |
| } | |
| .rag-context { | |
| background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%); | |
| border-left: 4px solid #f59e0b; | |
| padding: 12px; | |
| margin: 12px 0; | |
| border-radius: 8px; | |
| font-size: 0.9rem; | |
| } | |
| .thinking-section { | |
| background: rgba(0, 0, 0, 0.02); | |
| border: 1px solid rgba(0, 0, 0, 0.1); | |
| border-radius: 8px; | |
| padding: 12px; | |
| margin: 8px 0; | |
| } | |
| """ | |
| class SimpleTextSplitter: | |
| """ν μ€νΈ λΆν κΈ°""" | |
| def __init__(self, chunk_size=800, chunk_overlap=100): | |
| self.chunk_size = chunk_size | |
| self.chunk_overlap = chunk_overlap | |
| def split_text(self, text: str) -> List[str]: | |
| """ν μ€νΈλ₯Ό μ²ν¬λ‘ λΆν """ | |
| chunks = [] | |
| sentences = text.split('. ') | |
| current_chunk = "" | |
| for sentence in sentences: | |
| if len(current_chunk) + len(sentence) < self.chunk_size: | |
| current_chunk += sentence + ". " | |
| else: | |
| if current_chunk: | |
| chunks.append(current_chunk.strip()) | |
| current_chunk = sentence + ". " | |
| if current_chunk: | |
| chunks.append(current_chunk.strip()) | |
| return chunks | |
| class PDFRAGSystem: | |
| """PDF κΈ°λ° RAG μμ€ν """ | |
| def __init__(self): | |
| self.documents = {} | |
| self.document_chunks = {} | |
| self.embeddings_store = {} | |
| self.text_splitter = SimpleTextSplitter(chunk_size=800, chunk_overlap=100) | |
| # μλ² λ© λͺ¨λΈ μ΄κΈ°ν | |
| self.embedder = None | |
| if ST_AVAILABLE: | |
| try: | |
| self.embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
| print("β μλ² λ© λͺ¨λΈ λ‘λ μ±κ³΅") | |
| except Exception as e: | |
| print(f"β οΈ μλ² λ© λͺ¨λΈ λ‘λ μ€ν¨: {e}") | |
| def extract_text_from_pdf(self, pdf_path: str) -> Dict[str, Any]: | |
| """PDFμμ ν μ€νΈ μΆμΆ""" | |
| if not PDF_AVAILABLE: | |
| return { | |
| "metadata": { | |
| "title": "PDF Reader Not Available", | |
| "file_name": os.path.basename(pdf_path), | |
| "pages": 0 | |
| }, | |
| "full_text": "PDF μ²λ¦¬λ₯Ό μν΄ 'pip install pymupdf'λ₯Ό μ€νν΄μ£ΌμΈμ." | |
| } | |
| try: | |
| doc = fitz.open(pdf_path) | |
| text_content = [] | |
| metadata = { | |
| "title": doc.metadata.get("title", os.path.basename(pdf_path)), | |
| "pages": len(doc), | |
| "file_name": os.path.basename(pdf_path) | |
| } | |
| for page_num, page in enumerate(doc): | |
| text = page.get_text() | |
| if text.strip(): | |
| text_content.append(text) | |
| doc.close() | |
| return { | |
| "metadata": metadata, | |
| "full_text": "\n\n".join(text_content) | |
| } | |
| except Exception as e: | |
| raise Exception(f"PDF μ²λ¦¬ μ€λ₯: {str(e)}") | |
| def process_and_store_pdf(self, pdf_path: str, doc_id: str) -> Dict[str, Any]: | |
| """PDF μ²λ¦¬ λ° μ μ₯""" | |
| try: | |
| # PDF ν μ€νΈ μΆμΆ | |
| pdf_data = self.extract_text_from_pdf(pdf_path) | |
| # ν μ€νΈλ₯Ό μ²ν¬λ‘ λΆν | |
| chunks = self.text_splitter.split_text(pdf_data["full_text"]) | |
| if not chunks: | |
| print("Warning: No chunks created from PDF") | |
| return {"success": False, "error": "No text content found in PDF"} | |
| print(f"Created {len(chunks)} chunks from PDF") | |
| # μ²ν¬ μ μ₯ | |
| self.document_chunks[doc_id] = chunks | |
| # μλ² λ© μμ± (μ νμ ) | |
| if self.embedder: | |
| try: | |
| print("Generating embeddings...") | |
| embeddings = self.embedder.encode(chunks) | |
| self.embeddings_store[doc_id] = embeddings | |
| print(f"Generated {len(embeddings)} embeddings") | |
| except Exception as e: | |
| print(f"Warning: Failed to generate embeddings: {e}") | |
| # μλ² λ© μ€ν¨ν΄λ κ³μ μ§ν | |
| # λ¬Έμ μ 보 μ μ₯ | |
| self.documents[doc_id] = { | |
| "metadata": pdf_data["metadata"], | |
| "chunk_count": len(chunks), | |
| "upload_time": datetime.now().isoformat() | |
| } | |
| # λλ²κ·Έ: 첫 λ²μ§Έ μ²ν¬ μΆλ ₯ | |
| print(f"First chunk preview: {chunks[0][:200]}...") | |
| return { | |
| "success": True, | |
| "doc_id": doc_id, | |
| "chunks": len(chunks), | |
| "pages": pdf_data["metadata"]["pages"], | |
| "title": pdf_data["metadata"]["title"] | |
| } | |
| except Exception as e: | |
| print(f"Error processing PDF: {e}") | |
| return {"success": False, "error": str(e)} | |
| def search_relevant_chunks(self, query: str, doc_ids: List[str], top_k: int = 3) -> List[Dict]: | |
| """κ΄λ ¨ μ²ν¬ κ²μ""" | |
| all_relevant_chunks = [] | |
| print(f"Searching chunks for query: '{query[:50]}...' in {len(doc_ids)} documents") | |
| # λ¨Όμ λ¬Έμκ° μλμ§ νμΈ | |
| for doc_id in doc_ids: | |
| if doc_id not in self.document_chunks: | |
| print(f"Warning: Document {doc_id} not found in chunks") | |
| continue | |
| chunks = self.document_chunks[doc_id] | |
| print(f"Document {doc_id} has {len(chunks)} chunks") | |
| # μλ² λ© κΈ°λ° κ²μ μλ | |
| if self.embedder and doc_id in self.embeddings_store: | |
| try: | |
| query_embedding = self.embedder.encode([query])[0] | |
| doc_embeddings = self.embeddings_store[doc_id] | |
| # μ½μ¬μΈ μ μ¬λ κ³μ° (μμ νκ²) | |
| similarities = [] | |
| for i, emb in enumerate(doc_embeddings): | |
| try: | |
| query_norm = np.linalg.norm(query_embedding) | |
| emb_norm = np.linalg.norm(emb) | |
| if query_norm > 0 and emb_norm > 0: | |
| sim = np.dot(query_embedding, emb) / (query_norm * emb_norm) | |
| similarities.append(sim) | |
| else: | |
| similarities.append(0.0) | |
| except Exception as e: | |
| print(f"Error calculating similarity for chunk {i}: {e}") | |
| similarities.append(0.0) | |
| # μμ μ²ν¬ μ ν | |
| if similarities: | |
| top_indices = np.argsort(similarities)[-min(top_k, len(similarities)):][::-1] | |
| for idx in top_indices: | |
| if idx < len(chunks): # μΈλ±μ€ λ²μ νμΈ | |
| all_relevant_chunks.append({ | |
| "content": chunks[idx], | |
| "doc_name": self.documents[doc_id]["metadata"]["file_name"], | |
| "similarity": similarities[idx] | |
| }) | |
| print(f"Added chunk {idx} with similarity: {similarities[idx]:.3f}") | |
| except Exception as e: | |
| print(f"Error in embedding search: {e}") | |
| # μλ² λ© μ€ν¨μ ν΄λ°± | |
| # μλ² λ©μ΄ μκ±°λ μ€ν¨ν κ²½μ° - κ°λ¨ν μ²μ Nκ° μ²ν¬ λ°ν | |
| if not all_relevant_chunks: | |
| print(f"Falling back to simple chunk selection for {doc_id}") | |
| for i in range(min(top_k, len(chunks))): | |
| all_relevant_chunks.append({ | |
| "content": chunks[i], | |
| "doc_name": self.documents[doc_id]["metadata"]["file_name"], | |
| "similarity": 1.0 - (i * 0.1) # μμλλ‘ κ°μ€μΉ | |
| }) | |
| print(f"Added chunk {i} (fallback)") | |
| # μ μ¬λ κΈ°μ€ μ λ ¬ | |
| all_relevant_chunks.sort(key=lambda x: x.get('similarity', 0), reverse=True) | |
| # μμ Kκ° μ ν | |
| result = all_relevant_chunks[:top_k] | |
| print(f"Returning {len(result)} chunks") | |
| # λλ²κ·Έ: 첫 λ²μ§Έ μ²ν¬ λ΄μ© μΌλΆ μΆλ ₯ | |
| if result: | |
| print(f"First chunk preview: {result[0]['content'][:100]}...") | |
| return result | |
| def create_rag_prompt(self, query: str, doc_ids: List[str], top_k: int = 3) -> tuple: | |
| """RAG ν둬ννΈ μμ± - 쿼리μ 컨ν μ€νΈλ₯Ό λΆλ¦¬νμ¬ λ°ν""" | |
| print(f"Creating RAG prompt for query: '{query[:50]}...' with docs: {doc_ids}") | |
| relevant_chunks = self.search_relevant_chunks(query, doc_ids, top_k) | |
| if not relevant_chunks: | |
| print("No relevant chunks found - checking if documents exist") | |
| # λ¬Έμκ° μλλ° μ²ν¬λ₯Ό λͺ» μ°Ύμ κ²½μ°, 첫 λ²μ§Έ μ²ν¬λΌλ μ¬μ© | |
| for doc_id in doc_ids: | |
| if doc_id in self.document_chunks and self.document_chunks[doc_id]: | |
| print(f"Using first chunk from {doc_id} as fallback") | |
| relevant_chunks = [{ | |
| "content": self.document_chunks[doc_id][0], | |
| "doc_name": self.documents[doc_id]["metadata"]["file_name"], | |
| "similarity": 0.5 | |
| }] | |
| break | |
| if not relevant_chunks: | |
| print("No documents or chunks available") | |
| return query, "" | |
| print(f"Using {len(relevant_chunks)} chunks for context") | |
| # 컨ν μ€νΈ κ΅¬μ± | |
| context_parts = [] | |
| context_parts.append("Based on the following document context, please answer the question below:") | |
| context_parts.append("=" * 40) | |
| for i, chunk in enumerate(relevant_chunks, 1): | |
| context_parts.append(f"\n[Document Reference {i} - {chunk['doc_name']}]") | |
| # μ²ν¬ ν¬κΈ° μ¦κ° | |
| content = chunk['content'][:1000] if len(chunk['content']) > 1000 else chunk['content'] | |
| context_parts.append(content) | |
| print(f"Added chunk {i} ({len(content)} chars) with similarity: {chunk.get('similarity', 0):.3f}") | |
| context_parts.append("\n" + "=" * 40) | |
| context = "\n".join(context_parts) | |
| enhanced_query = f"{context}\n\nQuestion: {query}\n\nAnswer based on the document context provided above:" | |
| print(f"Enhanced query length: {len(enhanced_query)} chars (original: {len(query)} chars)") | |
| return enhanced_query, context | |
| # Initialize model and RAG system | |
| model_id = "openai/gpt-oss-20b" | |
| pipe = pipeline( | |
| "text-generation", | |
| model=model_id, | |
| torch_dtype="auto", | |
| device_map="auto", | |
| ) | |
| rag_system = PDFRAGSystem() | |
| # Global state for RAG | |
| rag_enabled = False | |
| selected_docs = [] | |
| top_k_chunks = 3 | |
| last_context = "" | |
| def format_conversation_history(chat_history): | |
| """Format conversation history for the model""" | |
| messages = [] | |
| for item in chat_history: | |
| role = item["role"] | |
| content = item["content"] | |
| if isinstance(content, list): | |
| content = content[0]["text"] if content and "text" in content[0] else str(content) | |
| messages.append({"role": role, "content": content}) | |
| return messages | |
| def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty): | |
| """Generate response with optional RAG enhancement""" | |
| global last_context, rag_enabled, selected_docs, top_k_chunks | |
| # Debug logging | |
| print(f"RAG Enabled: {rag_enabled}") | |
| print(f"Selected Docs: {selected_docs}") | |
| print(f"Available Docs: {list(rag_system.documents.keys())}") | |
| # Apply RAG if enabled | |
| if rag_enabled and selected_docs: | |
| doc_ids = [doc.split(":")[0] for doc in selected_docs] | |
| enhanced_input, context = rag_system.create_rag_prompt(input_data, doc_ids, top_k_chunks) | |
| last_context = context | |
| actual_input = enhanced_input | |
| print(f"RAG Applied - Original: {len(input_data)} chars, Enhanced: {len(enhanced_input)} chars") | |
| else: | |
| actual_input = input_data | |
| last_context = "" | |
| print("RAG Not Applied") | |
| # Prepare messages | |
| new_message = {"role": "user", "content": actual_input} | |
| system_message = [{"role": "system", "content": system_prompt}] if system_prompt else [] | |
| processed_history = format_conversation_history(chat_history) | |
| messages = system_message + processed_history + [new_message] | |
| # Setup streaming | |
| streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| "streamer": streamer | |
| } | |
| thread = Thread(target=pipe, args=(messages,), kwargs=generation_kwargs) | |
| thread.start() | |
| # Process streaming output | |
| thinking = "" | |
| final = "" | |
| started_final = False | |
| for chunk in streamer: | |
| if not started_final: | |
| if "assistantfinal" in chunk.lower(): | |
| split_parts = re.split(r'assistantfinal', chunk, maxsplit=1) | |
| thinking += split_parts[0] | |
| final += split_parts[1] | |
| started_final = True | |
| else: | |
| thinking += chunk | |
| else: | |
| final += chunk | |
| clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip() | |
| clean_final = final.strip() | |
| # Add RAG context indicator if used | |
| rag_indicator = "" | |
| if rag_enabled and selected_docs and last_context: | |
| rag_indicator = "<div class='rag-context'>π RAG Context Applied</div>\n\n" | |
| formatted = f"{rag_indicator}<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}" | |
| yield formatted | |
| def upload_pdf(file): | |
| """PDF νμΌ μ λ‘λ μ²λ¦¬""" | |
| if file is None: | |
| return ( | |
| gr.update(value="<div class='pdf-status pdf-info'>π νμΌμ μ νν΄μ£ΌμΈμ</div>"), | |
| gr.update(choices=[]) | |
| ) | |
| try: | |
| # νμΌ ν΄μλ₯Ό IDλ‘ μ¬μ© | |
| with open(file.name, 'rb') as f: | |
| file_hash = hashlib.md5(f.read()).hexdigest()[:8] | |
| doc_id = f"doc_{file_hash}" | |
| # PDF μ²λ¦¬ λ° μ μ₯ | |
| result = rag_system.process_and_store_pdf(file.name, doc_id) | |
| if result["success"]: | |
| status_html = f""" | |
| <div class="pdf-status pdf-success"> | |
| β PDF μ λ‘λ μλ£!<br> | |
| π {result['title']}<br> | |
| π {result['pages']} νμ΄μ§ | π {result['chunks']} μ²ν¬ | |
| </div> | |
| """ | |
| # λ¬Έμ λͺ©λ‘ μ λ°μ΄νΈ | |
| doc_choices = [f"{doc_id}: {rag_system.documents[doc_id]['metadata']['file_name']}" | |
| for doc_id in rag_system.documents.keys()] | |
| return ( | |
| status_html, | |
| gr.update(choices=doc_choices, value=doc_choices) | |
| ) | |
| else: | |
| return ( | |
| f"<div class='pdf-status pdf-error'>β μ€λ₯: {result['error']}</div>", | |
| gr.update() | |
| ) | |
| except Exception as e: | |
| return ( | |
| f"<div class='pdf-status pdf-error'>β μ€λ₯: {str(e)}</div>", | |
| gr.update() | |
| ) | |
| def clear_documents(): | |
| """λ¬Έμ μ΄κΈ°ν""" | |
| global selected_docs | |
| rag_system.documents = {} | |
| rag_system.document_chunks = {} | |
| rag_system.embeddings_store = {} | |
| selected_docs = [] | |
| return ( | |
| gr.update(value="<div class='pdf-status pdf-info'>ποΈ λͺ¨λ λ¬Έμκ° μμ λμμ΅λλ€</div>"), | |
| gr.update(choices=[], value=[]) | |
| ) | |
| def update_rag_settings(enable, docs, k): | |
| """Update RAG settings""" | |
| global rag_enabled, selected_docs, top_k_chunks | |
| rag_enabled = enable | |
| selected_docs = docs if docs else [] | |
| top_k_chunks = k | |
| # Debug logging | |
| print(f"RAG Settings Updated - Enabled: {rag_enabled}, Docs: {selected_docs}, Top-K: {top_k_chunks}") | |
| status = "β Enabled" if enable and docs else "β Disabled" | |
| status_html = f"<div class='pdf-status pdf-info'>π RAG: <strong>{status}</strong></div>" | |
| # Show context preview if RAG is enabled | |
| if enable and docs: | |
| preview = f"<div class='rag-context'>π Using {len(docs)} document(s) with {k} chunks per query</div>" | |
| return gr.update(value=status_html), gr.update(value=preview, visible=True) | |
| else: | |
| return gr.update(value=status_html), gr.update(value="", visible=False) | |
| # Build the interface | |
| with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, fill_height=True) as demo: | |
| gr.Markdown("# π GPT-OSS-20B with PDF RAG System") | |
| gr.Markdown("Enhanced AI assistant with document-based context understanding") | |
| with gr.Row(): | |
| # Left sidebar for RAG controls | |
| with gr.Column(scale=1): | |
| with gr.Group(elem_classes="main-container"): | |
| gr.Markdown("### π Document RAG Settings") | |
| pdf_upload = gr.File( | |
| label="Upload PDF", | |
| file_types=[".pdf"], | |
| type="filepath" | |
| ) | |
| upload_status = gr.HTML( | |
| value="<div class='pdf-status pdf-info'>π€ Upload a PDF to enable document-based answers</div>" | |
| ) | |
| document_list = gr.CheckboxGroup( | |
| choices=[], | |
| label="π Select Documents", | |
| info="Choose documents to use as context" | |
| ) | |
| clear_btn = gr.Button("ποΈ Clear All Documents", size="sm", variant="secondary") | |
| enable_rag = gr.Checkbox( | |
| label="β¨ Enable RAG", | |
| value=False, | |
| info="Use documents for context-aware responses" | |
| ) | |
| top_k_slider = gr.Slider( | |
| minimum=1, | |
| maximum=5, | |
| value=3, | |
| step=1, | |
| label="Context Chunks", | |
| info="Number of document chunks to use" | |
| ) | |
| # RAG status display | |
| rag_status = gr.HTML( | |
| value="<div class='pdf-status pdf-info'>π RAG: <strong>Disabled</strong></div>" | |
| ) | |
| context_preview = gr.HTML(value="", visible=False) | |
| # Right side for chat interface | |
| with gr.Column(scale=3): | |
| with gr.Group(elem_classes="main-container"): | |
| # Create ChatInterface with custom function | |
| chat_interface = gr.ChatInterface( | |
| fn=generate_response, | |
| additional_inputs=[ | |
| gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048), | |
| gr.Textbox( | |
| label="System Prompt", | |
| value="You are a helpful assistant. Reasoning: medium", | |
| lines=4, | |
| placeholder="Change system prompt" | |
| ), | |
| gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7), | |
| gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
| gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50), | |
| gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0) | |
| ], | |
| examples=[ | |
| [{"text": "Explain Newton laws clearly and concisely"}], | |
| [{"text": "Write a Python function to calculate the Fibonacci sequence"}], | |
| [{"text": "What are the benefits of open weight AI models"}], | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| description="""Chat with GPT-OSS-20B. Upload PDFs to enhance responses with document context. | |
| Click to view thinking process (default is on).""", | |
| textbox=gr.Textbox( | |
| label="Query Input", | |
| placeholder="Type your prompt (RAG will be applied if enabled)" | |
| ), | |
| stop_btn="Stop Generation", | |
| multimodal=False | |
| ) | |
| # Event handlers | |
| pdf_upload.upload( | |
| fn=upload_pdf, | |
| inputs=[pdf_upload], | |
| outputs=[upload_status, document_list] | |
| ) | |
| clear_btn.click( | |
| fn=clear_documents, | |
| outputs=[upload_status, document_list] | |
| ) | |
| # Update RAG settings when changed | |
| enable_rag.change( | |
| fn=update_rag_settings, | |
| inputs=[enable_rag, document_list, top_k_slider], | |
| outputs=[rag_status, context_preview] | |
| ) | |
| document_list.change( | |
| fn=update_rag_settings, | |
| inputs=[enable_rag, document_list, top_k_slider], | |
| outputs=[rag_status, context_preview] | |
| ) | |
| top_k_slider.change( | |
| fn=update_rag_settings, | |
| inputs=[enable_rag, document_list, top_k_slider], | |
| outputs=[rag_status, context_preview] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) |