Spaces:
Sleeping
Sleeping
Upload engine.py
Browse files
engine.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torchvision.transforms as transforms
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import json
|
| 6 |
+
from neuralnet.model import SeqToSeq
|
| 7 |
+
import wget
|
| 8 |
+
|
| 9 |
+
url = "https://github.com/Koushik0901/Image-Captioning/releases/download/v1.0/flickr30k.pt"
|
| 10 |
+
# os.system("curl -L https://github.com/Koushik0901/Image-Captioning/releases/download/v1.0/flickr30k.pt")
|
| 11 |
+
filename = wget.download(url)
|
| 12 |
+
|
| 13 |
+
def inference(img_path):
|
| 14 |
+
transform = transforms.Compose(
|
| 15 |
+
[
|
| 16 |
+
transforms.Resize((299, 299)),
|
| 17 |
+
transforms.ToTensor(),
|
| 18 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 19 |
+
]
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
vocabulary = json.load(open('./vocab.json'))
|
| 23 |
+
|
| 24 |
+
model_params = {"embed_size":256, "hidden_size":512, "vocab_size": 7666, "num_layers": 3, "device":"cpu"}
|
| 25 |
+
model = SeqToSeq(**model_params)
|
| 26 |
+
checkpoint = torch.load('./flickr30k.pt', map_location = 'cpu')
|
| 27 |
+
model.load_state_dict(checkpoint['state_dict'])
|
| 28 |
+
|
| 29 |
+
img = transform(Image.open(img_path).convert("RGB")).unsqueeze(0)
|
| 30 |
+
|
| 31 |
+
result_caption = []
|
| 32 |
+
model.eval()
|
| 33 |
+
|
| 34 |
+
x = model.encoder(img).unsqueeze(0)
|
| 35 |
+
states = None
|
| 36 |
+
|
| 37 |
+
out_captions = model.caption_image(img, vocabulary['itos'], 50)
|
| 38 |
+
return " ".join(out_captions[1:-1])
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
if __name__ == '__main__':
|
| 42 |
+
print(inference('./test_examples/dog.png'))
|