Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,10 +4,32 @@ import PIL.Image
|
|
| 4 |
import skimage.io as io
|
| 5 |
import streamlit as st
|
| 6 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
|
|
|
|
| 7 |
from model import generate2,ClipCaptionModel
|
| 8 |
from engine import inference
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
device = "cpu"
|
| 13 |
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
|
|
@@ -35,7 +57,7 @@ def ui():
|
|
| 35 |
pil_image = PIL.Image.fromarray(image)
|
| 36 |
image = preprocess(pil_image).unsqueeze(0).to(device)
|
| 37 |
|
| 38 |
-
option = st.selectbox('Please select the Model',('Model', 'COCO Model','PreTrained Model'))
|
| 39 |
|
| 40 |
if option=='Model':
|
| 41 |
with torch.no_grad():
|
|
@@ -60,6 +82,12 @@ def ui():
|
|
| 60 |
st.image(uploaded_file, width = 500, channels = 'RGB')
|
| 61 |
st.markdown("**PREDICTION:** " + out)
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
if __name__ == '__main__':
|
| 65 |
ui()
|
|
|
|
| 4 |
import skimage.io as io
|
| 5 |
import streamlit as st
|
| 6 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
|
| 7 |
+
from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel
|
| 8 |
from model import generate2,ClipCaptionModel
|
| 9 |
from engine import inference
|
| 10 |
|
| 11 |
+
|
| 12 |
+
model_trained = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 13 |
+
model_trained.load_state_dict(torch.load('model_trained.pth',map_location=torch.device('cpu')))
|
| 14 |
+
image_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 15 |
+
tokenizer = GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 16 |
+
|
| 17 |
+
def show_n_generate(img, greedy = True, model = model_raw):
|
| 18 |
+
image = Image.open(img)
|
| 19 |
+
pixel_values = image_processor(image, return_tensors ="pt").pixel_values
|
| 20 |
+
plt.imshow(np.asarray(image))
|
| 21 |
+
plt.show()
|
| 22 |
+
|
| 23 |
+
if greedy:
|
| 24 |
+
generated_ids = model.generate(pixel_values, max_new_tokens = 30)
|
| 25 |
+
else:
|
| 26 |
+
generated_ids = model.generate(
|
| 27 |
+
pixel_values,
|
| 28 |
+
do_sample=True,
|
| 29 |
+
max_new_tokens = 30,
|
| 30 |
+
top_k=5)
|
| 31 |
+
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 32 |
+
returned generated_text
|
| 33 |
|
| 34 |
device = "cpu"
|
| 35 |
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
|
|
|
|
| 57 |
pil_image = PIL.Image.fromarray(image)
|
| 58 |
image = preprocess(pil_image).unsqueeze(0).to(device)
|
| 59 |
|
| 60 |
+
option = st.selectbox('Please select the Model',('Model', 'COCO Model','PreTrained Model','Fine Tuned Model'))
|
| 61 |
|
| 62 |
if option=='Model':
|
| 63 |
with torch.no_grad():
|
|
|
|
| 82 |
st.image(uploaded_file, width = 500, channels = 'RGB')
|
| 83 |
st.markdown("**PREDICTION:** " + out)
|
| 84 |
|
| 85 |
+
elif option=='Fine Tuned Model':
|
| 86 |
+
out=show_n_generate(uploaded_file, greedy = False, model = model_trained)
|
| 87 |
+
st.image(uploaded_file, width = 500, channels = 'RGB')
|
| 88 |
+
st.markdown("**PREDICTION:** " + out)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
|
| 92 |
if __name__ == '__main__':
|
| 93 |
ui()
|