Spaces:
Running
Running
File size: 18,303 Bytes
45ea1a5 0961ac0 45ea1a5 ec099ff 0961ac0 ec099ff a36f21d 928fb2c 0961ac0 928fb2c 45ea1a5 0961ac0 e14005e b4b76e6 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 ec099ff 0961ac0 45ea1a5 0961ac0 45ea1a5 a077a57 b4b76e6 0961ac0 b4b76e6 0961ac0 45ea1a5 0961ac0 08b7752 0961ac0 45ea1a5 0961ac0 45ea1a5 b4b76e6 0961ac0 3ea8059 45ea1a5 0961ac0 3ea8059 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 928fb2c 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 f553130 45ea1a5 f553130 45ea1a5 f553130 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 f553130 45ea1a5 0961ac0 45ea1a5 f553130 45ea1a5 f553130 a36f21d 0961ac0 a36f21d 0961ac0 a36f21d f553130 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 f553130 0961ac0 f553130 0961ac0 45ea1a5 f553130 45ea1a5 f553130 0961ac0 f553130 0961ac0 45ea1a5 0961ac0 45ea1a5 f553130 3ea8059 b4b76e6 f553130 b4b76e6 f553130 b4b76e6 f553130 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 f553130 0961ac0 f553130 0961ac0 f553130 0961ac0 45ea1a5 0961ac0 f553130 0961ac0 45ea1a5 f553130 0961ac0 45ea1a5 b4b76e6 0961ac0 45ea1a5 0961ac0 b4b76e6 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 45ea1a5 0961ac0 b4b76e6 0961ac0 45ea1a5 0961ac0 45ea1a5 6896445 0961ac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import spaces
import gradio as gr
import torch
from PIL import Image
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoTokenizer
from transformers import Qwen2VLProcessor, Qwen2VLImageProcessor
import traceback
import json
import os
# ========================================
# AIN VLM MODEL FOR OCR
# ========================================
# Model configuration
MODEL_ID = "MBZUAI/AIN"
# Image resolution settings for the processor
# The default range for the number of visual tokens per image in the model is 4-16384
# These settings balance speed and memory usage
MIN_PIXELS = 256 * 28 * 28 # Minimum resolution
MAX_PIXELS = 1280 * 28 * 28 # Maximum resolution
# Global model and processor
model = None
processor = None
# Strict OCR-focused prompt
OCR_PROMPT = """Extract all text from this image exactly as it appears.
Requirements:
1. Extract ONLY the text content - do not describe, analyze, or interpret the image
2. Maintain the original text structure, layout, and formatting
3. Preserve line breaks, paragraphs, and spacing as they appear
4. Do not translate the text - keep it in its original language
5. Do not add any explanations, descriptions, or additional commentary
6. If there are tables, maintain their structure
7. If there are headers, titles, or sections, preserve their hierarchy
Output only the extracted text, nothing else."""
def ensure_model_loaded():
"""Lazily load the AIN VLM model and processor."""
global model, processor
if model is not None and processor is not None:
return
print("π Loading AIN VLM model...")
try:
# Determine device and dtype
if torch.cuda.is_available():
device_map = "auto"
torch_dtype = "auto"
print("β
Using GPU (CUDA)")
else:
device_map = "cpu"
torch_dtype = torch.float32
print("β
Using CPU")
# Load model
loaded_model = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
torch_dtype=torch_dtype,
device_map=device_map,
trust_remote_code=True,
)
# Load processor with proper configuration
# Manual construction to avoid size parameter issues
try:
# First, try the standard way
loaded_processor = AutoProcessor.from_pretrained(
MODEL_ID,
trust_remote_code=True,
)
print("β
Processor loaded successfully (standard method)")
except ValueError as e:
if "size must contain 'shortest_edge' and 'longest_edge' keys" in str(e):
print("β οΈ Standard processor loading failed, trying manual construction...")
# Manually construct processor with correct size format
try:
# Load tokenizer separately
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
# Create image processor with correct size format
image_processor = Qwen2VLImageProcessor(
size={"shortest_edge": 224, "longest_edge": 1120}, # Valid format
do_resize=True,
do_rescale=True,
do_normalize=True,
)
# Create processor from components
loaded_processor = Qwen2VLProcessor(
image_processor=image_processor,
tokenizer=tokenizer,
)
print("β
Processor loaded successfully (manual construction)")
except Exception as manual_error:
print(f"β Manual construction also failed: {manual_error}")
raise
else:
raise
model = loaded_model
processor = loaded_processor
print("β
Model loaded successfully!")
except Exception as e:
print(f"β Error loading model: {e}")
traceback.print_exc()
raise
@spaces.GPU(duration=100)
def extract_text_from_image(
image: Image.Image,
custom_prompt: str = None,
max_new_tokens: int = 2048,
min_pixels: int = None,
max_pixels: int = None
) -> str:
"""
Extract text from image using AIN VLM model.
Args:
image: PIL Image to process
custom_prompt: Optional custom prompt (uses default OCR prompt if None)
max_new_tokens: Maximum tokens to generate
min_pixels: Minimum image resolution (optional)
max_pixels: Maximum image resolution (optional)
Returns:
Extracted text as string
"""
try:
# Ensure model is loaded
ensure_model_loaded()
if model is None or processor is None:
return "β Error: Model not loaded. Please refresh and try again."
# Use custom prompt or default OCR prompt
prompt_to_use = custom_prompt if custom_prompt and custom_prompt.strip() else OCR_PROMPT
# Use custom resolution settings if provided, otherwise use defaults
min_pix = min_pixels if min_pixels else MIN_PIXELS
max_pix = max_pixels if max_pixels else MAX_PIXELS
# Prepare messages in the format expected by the model
# Include min_pixels and max_pixels in the image content for proper resizing
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
"min_pixels": min_pix,
"max_pixels": max_pix,
},
{
"type": "text",
"text": prompt_to_use
},
],
}
]
# Apply chat template
text = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Process vision information
image_inputs, video_inputs = process_vision_info(messages)
# Prepare inputs
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
# Move to device
device = next(model.parameters()).device
inputs = inputs.to(device)
# Generate output
with torch.no_grad():
generated_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False, # Greedy decoding for consistency
)
# Decode output
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
result = output_text[0] if output_text else ""
return result.strip() if result else "No text extracted"
except Exception as e:
error_msg = f"β Error during text extraction: {str(e)}"
print(error_msg)
traceback.print_exc()
return error_msg
def create_gradio_interface():
"""Create the Gradio interface for AIN OCR."""
# Custom CSS for better UI
css = """
.main-container {
max-width: 1400px;
margin: 0 auto;
padding: 20px;
}
.header-text {
text-align: center;
color: #2c3e50;
margin-bottom: 30px;
}
.process-button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-weight: bold !important;
font-size: 1.1em !important;
padding: 12px 24px !important;
width: 100% !important;
margin-top: 10px !important;
}
.process-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 12px rgba(0,0,0,0.2) !important;
}
/* Larger font for extracted text */
.output-textbox textarea {
font-size: 20px !important;
line-height: 2.0 !important;
font-family: 'Segoe UI', 'Tahoma', 'Traditional Arabic', 'Arabic Typesetting', sans-serif !important;
padding: 24px !important;
direction: auto !important;
text-align: start !important;
}
.output-textbox {
background: #ffffff;
border: 2px solid #e0e0e0;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
/* Better Arabic text support */
.output-textbox textarea[dir="rtl"] {
text-align: right !important;
direction: rtl !important;
}
.info-box {
background: #e3f2fd;
border-left: 4px solid #2196f3;
padding: 15px;
margin: 10px 0;
border-radius: 4px;
}
/* Status box styling */
.status-box {
background: #f0f4f8;
border: 1px solid #d0dae6;
border-radius: 6px;
padding: 12px;
margin-top: 10px;
text-align: center;
font-size: 14px;
}
/* Better spacing for rows and columns */
.gradio-container {
gap: 20px !important;
}
.contain {
gap: 15px !important;
}
/* Image preview styling */
.image-preview {
border: 2px solid #e0e0e0;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
/* Accordion styling */
.accordion {
background: #f8f9fa;
border-radius: 8px;
margin-top: 15px;
padding: 5px;
}
/* Clear button */
button[variant="secondary"] {
width: 100% !important;
margin-top: 10px !important;
}
/* Label styling */
label {
font-weight: 600 !important;
margin-bottom: 8px !important;
}
/* Better component spacing */
.gr-form {
gap: 12px !important;
}
/* Example images styling */
.gr-examples {
margin-top: 15px;
}
"""
with gr.Blocks(theme=gr.themes.Soft(), css=css, title="AIN VLM OCR") as demo:
# Header
gr.HTML("""
<div class="header-text">
<h1>π AIN VLM - Vision Language Model OCR</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-top: 10px;">
Advanced OCR using Vision Language Model (VLM) for accurate text extraction
</p>
<p style="font-size: 0.95em; color: #9ca3af; margin-top: 8px;">
Powered by <strong>MBZUAI/AIN</strong> - Specialized for understanding and extracting text from images
</p>
</div>
""")
# Info box
gr.Markdown("""
<div class="info-box">
<strong>βΉοΈ How it works:</strong> Upload an image containing text, click "Process Image", and get the extracted text.
The VLM model intelligently understands context and can handle handwritten text better than traditional OCR models.
</div>
""")
# Main interface
with gr.Row(equal_height=False):
# Left column - Input
with gr.Column(scale=1, min_width=400):
# Image input
image_input = gr.Image(
label="πΈ Upload Image",
type="pil",
height=400,
elem_classes=["image-preview"]
)
# Advanced settings
with gr.Accordion("βοΈ Advanced Settings", open=False, elem_classes=["accordion"]):
custom_prompt = gr.Textbox(
label="Custom Prompt (Optional)",
placeholder="Leave empty to use default OCR prompt...",
lines=3,
info="Customize the prompt if you want specific extraction behavior"
)
max_tokens = gr.Slider(
minimum=512,
maximum=4096,
value=2048,
step=128,
label="Max Tokens",
info="Maximum length of extracted text"
)
gr.Markdown("**π Image Resolution Settings**")
gr.Markdown("*Controls visual token range (4-16384) - balance quality vs speed*")
with gr.Row():
min_pixels_input = gr.Number(
value=MIN_PIXELS,
label="Min Pixels",
info=f"Default: {MIN_PIXELS:,} (~{MIN_PIXELS//1000}k)",
precision=0
)
max_pixels_input = gr.Number(
value=MAX_PIXELS,
label="Max Pixels",
info=f"Default: {MAX_PIXELS:,} (~{MAX_PIXELS//1000}k)",
precision=0
)
show_prompt_btn = gr.Button("ποΈ Show Default Prompt", size="sm", variant="secondary")
# Process button
process_btn = gr.Button(
"π Process Image",
variant="primary",
elem_classes=["process-button"],
size="lg"
)
# Clear button
clear_btn = gr.Button("ποΈ Clear All", variant="secondary", size="lg")
# Right column - Output
with gr.Column(scale=1, min_width=500):
# Text output with larger font
text_output = gr.Textbox(
label="π Extracted Text",
placeholder="Extracted text will appear here...",
lines=18,
max_lines=22,
show_copy_button=True,
interactive=False,
elem_classes=["output-textbox"],
container=True,
)
# Status/info
status_output = gr.Markdown(
value="β¨ *Ready to process images*",
elem_classes=["status-box"]
)
# Examples section
with gr.Row():
with gr.Column():
gr.Markdown("### π Example Images")
gr.Markdown("*Click on any example below to load it*")
gr.Examples(
examples=[
["image/app/1762329983969.png"],
["image/app/1762330009302.png"],
["image/app/1762330020168.png"],
],
inputs=image_input,
label="",
examples_per_page=3
)
# Default prompt display
default_prompt_display = gr.Textbox(
label="Default OCR Prompt",
value=OCR_PROMPT,
lines=10,
visible=False,
interactive=False
)
# Event handlers
def process_image_handler(image, custom_prompt_text, max_tokens_value, min_pix, max_pix):
"""Handle image processing."""
if image is None:
return "", "β οΈ Please upload an image first."
try:
status = "β³ Processing image..."
extracted_text = extract_text_from_image(
image,
custom_prompt=custom_prompt_text,
max_new_tokens=int(max_tokens_value),
min_pixels=int(min_pix) if min_pix else None,
max_pixels=int(max_pix) if max_pix else None
)
if extracted_text and not extracted_text.startswith("β"):
status = f"β
Text extracted successfully! ({len(extracted_text)} characters)"
else:
status = "β οΈ No text extracted or error occurred."
return extracted_text, status
except Exception as e:
error_msg = f"β Error: {str(e)}"
return error_msg, "β Processing failed."
def clear_all_handler():
"""Clear all inputs and outputs."""
return None, "", "", "β¨ Ready to process images"
def toggle_prompt_display(current_visible):
"""Toggle the visibility of the default prompt."""
return gr.update(visible=not current_visible)
# Wire up events
process_btn.click(
process_image_handler,
inputs=[image_input, custom_prompt, max_tokens, min_pixels_input, max_pixels_input],
outputs=[text_output, status_output]
)
clear_btn.click(
clear_all_handler,
outputs=[image_input, text_output, custom_prompt, status_output]
)
# Show/hide default prompt
show_prompt_btn.click(
lambda: gr.update(visible=True),
outputs=[default_prompt_display]
)
return demo
if __name__ == "__main__":
# Create and launch the interface
demo = create_gradio_interface()
demo.queue(max_size=10).launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True,
show_error=True
)
|