portfolio / app.py
Verathagnus's picture
Update app.py
b4b5a5e verified
import numpy as np
import pandas as pd
from time import time
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Input, Embedding, LSTM, Concatenate, TimeDistributed, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping
import warnings
warnings.filterwarnings('ignore')
import pickle
import streamlit as st
from ftlangdetect import detect
import iso639
import streamlit.components.v1 as components
import os
gpt2_tokenizer = None
gpt2_model = None
from transformers import (
# GPT2Config,
# GPT2Tokenizer,
# GPT2Model,
BertTokenizer,
BertModel)
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
bert_model = BertModel.from_pretrained('bert-base-multilingual-uncased')
class_names = {0:'sadness', 1:'joy', 2:'love', 3:'anger', 4:'fear', 5:'surprise'}
import os
gpt2_tokenizer = None
gpt2_model = None
# gpt2_model = GPT2Model.from_pretrained("gpt2")
# gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# gpt2_tokenizer.padding_side = "left"
# gpt2_tokenizer.pad_token = gpt2_tokenizer.eos_token
# Define preprocessing function with smaller max length
def tokenize_sample(texts, tokenizer="bert"):
if tokenizer == "gpt2":
return gpt2_tokenizer(texts, padding="max_length", truncation=True, return_tensors='pt', max_length=128)
return bert_tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=128)
def get_embeddings(text, model_type="bert"):
tokenized_text = tokenize_sample(text, model_type)
if model_type =="gpt2":
outputs = gpt2_model(**tokenized_text)
else:
outputs = bert_model(**tokenized_text)
embeddings = outputs.last_hidden_state[:, 0, :].detach().numpy() # Get the embeddings for [CLS] token
return embeddings
path_to_models = "."
# path_to_models = os.environ['RAILWAY_VOLUME_MOUNT_PATH']+"/storage"
emotion_classifier_map={
"Naive Bayes":f"{path_to_models}/models/naive_bayes_model.sav",
"Logistic Regression":f"{path_to_models}/models/logistic_regression_model.sav",
"KNN":f"{path_to_models}/models/knn_model.sav",
"KMeans":f"{path_to_models}/models/kmeans_model.sav",
"SVM":f"{path_to_models}/models/svm_model.sav",
"Decision Tree":f"{path_to_models}/models/decision_tree_model.sav",
"Random Forest":f"{path_to_models}/models/random_forest_model.sav"
}
summarizer_map={
"Bengali":f"{path_to_models}/models/bengali_summarization_model.sav",
}
# print(os.listdir())
# print(os.environ["RAILWAY_VOLUME_MOUNT_PATH"])
# print(os.listdir(os.environ["RAILWAY_VOLUME_MOUNT_PATH"]+"/storage"))
summarizer_models=dict()
for i in summarizer_map:
with open(summarizer_map[i], 'rb') as file:
summarizer_models[i] = pickle.load(file)
emotion_classfier_models=dict()
for i in emotion_classifier_map:
with open(emotion_classifier_map[i], 'rb') as file:
emotion_classfier_models[i] = pickle.load(file)
def get_emotion_prediction(input, model_name):
if model_name in emotion_classfier_models:
return class_names[emotion_classfier_models[model_name].predict(get_embeddings(input))[0]]
else:
raise ValueError("Model type should be of the types: {}".format(", ".join(list(emotion_classfier_models.keys()))))
def decode_sequence(input_seq, max_summary_len, encoder_model, decoder_model, target_word_index, reverse_target_word_index):
# Encode the input as state vectors.
e_out, e_h, e_c = encoder_model.predict(input_seq)
# Generate empty target sequence of length 1.
target_seq = np.zeros((1,1))
# Populate the first word of target sequence with the start word.
target_seq[0, 0] = target_word_index['sostok']
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = decoder_model.predict([target_seq] + [e_out, e_h, e_c])
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_token = reverse_target_word_index[sampled_token_index]
if(sampled_token!='eostok'):
decoded_sentence += ' '+sampled_token
# Exit condition: either hit max length or find stop word.
if (sampled_token == 'eostok' or len(decoded_sentence.split()) >= (max_summary_len-1)):
stop_condition = True
# Update the target sequence (of length 1).
target_seq = np.zeros((1,1))
target_seq[0, 0] = sampled_token_index
# Update internal states
e_h, e_c = h, c
return decoded_sentence
def summarize_text(text, x_tokenizer, max_text_len, max_summary_len, encoder_model, decoder_model, target_word_index, reverse_target_word_index):
tokenized_sentence = pad_sequences(x_tokenizer.texts_to_sequences([text]), maxlen=max_text_len, padding='post')[0]
return decode_sequence(tokenized_sentence.reshape(1,max_text_len), max_summary_len, encoder_model, decoder_model, target_word_index, reverse_target_word_index)
def main():
list_of_tabs = st.tabs(["Indic Multilingual Text Summarizer", "Indic Multilingual Emotion Detection"])
# Title of the web app
with list_of_tabs[0]:
st.title('Indic Multilingual Text Summarizer')
# print(os.listdir())
# print(os.environ["RAILWAY_VOLUME_MOUNT_PATH"])
# print(os.listdir(os.environ["RAILWAY_VOLUME_MOUNT_PATH"]))
# Input text from the user
input_sentence_emotion = st.text_area('Enter a sentence', key="summarize")
# Model selection
# model_option = st.selectbox('Select the model', list(models.keys()))
# Result initialization
result = None
error = None
langlist = {"bn": "Bengali"}
# Prediction button
if st.button('Summarize'):
lang = detect(text=input_sentence_emotion, low_memory=False)['lang']
if lang in langlist:
result = summarize_text(input_sentence_emotion, summarizer_models[langlist[lang]]["x_tokenizer"], summarizer_models[langlist[lang]]["max_text_len"],summarizer_models[langlist[lang]]['max_summary_len'], summarizer_models[langlist[lang]]['encoder_model'], summarizer_models[langlist[lang]]['decoder_model'], summarizer_models[langlist[lang]]['target_word_index'], summarizer_models[langlist[lang]]['reverse_target_word_index']).replace("start ", "").replace(" end", "")
else:
error = f"{iso639.Language.from_part1(lang).name} is not supported.\n List of supported languages: {', '.join(langlist.values())}"
st.markdown(f"Current language support: Bengali")
# Display the result
if result:
st.success(f'Summary: {result}')
if error:
st.error(f'Error: {error}')
# Credits
# Credits
with list_of_tabs[1]:
st.title('Indic Multilingual Emotion Detection')
# print(os.listdir())
# print(os.environ["RAILWAY_VOLUME_MOUNT_PATH"])
# print(os.listdir(os.environ["RAILWAY_VOLUME_MOUNT_PATH"]))
# Input text from the user
input_sentence_emotion = st.text_input('Enter a sentence', key="emotion")
# Model selection
model_option = st.selectbox('Select the model', list(emotion_classfier_models.keys()))
# Result initialization
result = None
error = None
langlist = {"hi": "Hindi"}
# Prediction button
if st.button('Predict Emotion'):
lang = detect(text=input_sentence_emotion, low_memory=False)['lang']
if lang in langlist:
result = get_emotion_prediction(input_sentence_emotion, model_option)
else:
error = f"{iso639.Language.from_part1(lang).name} is not supported.\n List of supported languages: {', '.join(langlist.values())}"
st.markdown(f"Current language support: Hindi")
# Display the result
if result:
st.success(f'Prediction: {result}')
if error:
st.error(f'Error: {error}')
# Credits
# Credits
st.markdown("---") # Separator
st.markdown("""## Contributors
- Bishwaraj Paul
**Role** Intern
**Email:** bishwaraj.paul98@gmail.com / bishwaraj.paul@bahash.in
- Dr. Sahinur Rahman Laskar
**Role:** Mentor
Assistant Professor
School of Computer Science, UPES, Dehradun, India
**Email:** sahinurlaskar.nits@gmail.com / sahinur.laskar@ddn.upes.ac.in""")
footer = """<style>
.footer-text{
-webkit-text-size-adjust: 100%;
-webkit-tap-highlight-color: transparent;
--blue: #007bff;
--indigo: #6610f2;
--purple: #6f42c1;
--pink: #e83e8c;
--red: #dc3545;
--orange: #fd7e14;
--yellow: #ffc107;
--green: #28a745;
--teal: #20c997;
--cyan: #17a2b8;
--white: #fff;
--gray: #6c757d;
--gray-dark: #343a40;
--primary: #007bff;
--secondary: #6c757d;
--success: #28a745;
--info: #17a2b8;
--warning: #ffc107;
--danger: #dc3545;
--light: #f8f9fa;
--dark: #343a40;
--breakpoint-xs: 0;
--breakpoint-sm: 576px;
--breakpoint-md: 768px;
--breakpoint-lg: 992px;
--breakpoint-xl: 1200px;
--font-family-sans-serif: -apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";
--font-family-monospace: SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;
font-size: 16px;
font-weight: 400;
line-height: 24px;
letter-spacing: 1px;
font-family: 'Raleway', sans-serif;
color: #666;
box-sizing: border-box;
text-align: center!important;
}
@media (min-width: 576px) {
.col-sm-12 {
-webkit-box-flex: 0;
-ms-flex: 0 0 100%;
flex: 0 0 100%;
max-width: 100%;
}
}
.row {
display: -webkit-box;
display: -ms-flexbox;
display: flex;
-ms-flex-wrap: wrap;
flex-wrap: wrap;
margin-right: -15px;
margin-left: -15px;
}
@media (min-width: 1200px) {
.container {
max-width: 1140px;
}
}
@media (min-width: 992px) {
.container {
max-width: 960px;
}
}
@media (min-width: 768px) {
.container {
max-width: 720px;
}
}
@media (min-width: 576px) {
.container {
max-width: 540px;
}
}
.container {
width: 100%;
padding-right: 15px;
padding-left: 15px;
margin-right: auto;
margin-left: auto;
}
.footer-bottom-area {
padding: 30px 0;
display: block;
box-sizing: border-box;
}
.footer-bottom-bg {
background: #222;
}
</style>
<footer class="footer-bottom-area footer-bottom-bg">
<div class="container">
<div class="row">
<div class="col-sm-12">
<div class="footer-text">
<p style="color: white; font-style: sans-serif;"><span>Bahash Private Limited</span> ©2024 - All Right Reserved.</p>
</div>
</div>
</div>
</div>
</footer>
"""
components.html(footer)
# Handling query parameters
query = st.query_params
try:
## Look-up the tab from the query
if "tab" in query:
index_tab = query["tab"]
## Click on that tab
js = f"""
<script>
var tab = window.parent.document.getElementById('{index_tab}');
tab.click();
</script>
"""
st.components.v1.html(js)
except ValueError:
## Do nothing if the query parameter does not correspond to any of the tabs
pass
if __name__ == '__main__':
main()