Spaces:
Running
Running
Upload 6 files
Browse files- .python-version +1 -0
- .streamlit/config.toml +17 -0
- railway.json +9 -0
- requirements.txt +9 -0
- streamlit_app.py +329 -0
- test.js +1 -0
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.10
|
.streamlit/config.toml
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[server]
|
| 2 |
+
enableCORS=false
|
| 3 |
+
port = 8501
|
| 4 |
+
|
| 5 |
+
[theme]
|
| 6 |
+
# Primary accent for interactive elements
|
| 7 |
+
primaryColor = '#7792E3'
|
| 8 |
+
# Background color for the main content area
|
| 9 |
+
backgroundColor = '#000319'
|
| 10 |
+
# Background color for sidebar and most interactive widgets
|
| 11 |
+
secondaryBackgroundColor = '#52968e'
|
| 12 |
+
# Color used for almost all text
|
| 13 |
+
textColor = '#FFFFFF'
|
| 14 |
+
# Font family for all text in the app, except code blocks
|
| 15 |
+
# Accepted values (serif | sans serif | monospace)
|
| 16 |
+
# Default: "sans serif"
|
| 17 |
+
font = "sans serif"
|
railway.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"$schema": "https://railway.app/railway.schema.json",
|
| 3 |
+
"build": {
|
| 4 |
+
"builder": "NIXPACKS"
|
| 5 |
+
},
|
| 6 |
+
"deploy": {
|
| 7 |
+
"startCommand": "streamlit run streamlit_app.py --server.headless true --server.address 0.0.0.0 --server.port $PORT --server.fileWatcherType none --browser.gatherUsageStats false --client.toolbarMode minimal"
|
| 8 |
+
}
|
| 9 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.26.4
|
| 2 |
+
streamlit
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
| 5 |
+
fasttext-langdetect
|
| 6 |
+
python-iso639
|
| 7 |
+
scikit-learn
|
| 8 |
+
numpy==1.26.4
|
| 9 |
+
tensorflow
|
streamlit_app.py
ADDED
|
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import re, spacy
|
| 5 |
+
from time import time
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 8 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 9 |
+
from tensorflow.keras.layers import Input, Embedding, LSTM, Concatenate, TimeDistributed, Dense
|
| 10 |
+
from tensorflow.keras.models import Model
|
| 11 |
+
from tensorflow.keras.callbacks import EarlyStopping
|
| 12 |
+
import warnings
|
| 13 |
+
warnings.filterwarnings('ignore')
|
| 14 |
+
|
| 15 |
+
import pickle
|
| 16 |
+
import streamlit as st
|
| 17 |
+
from ftlangdetect import detect
|
| 18 |
+
import iso639
|
| 19 |
+
import streamlit.components.v1 as components
|
| 20 |
+
import os
|
| 21 |
+
gpt2_tokenizer = None
|
| 22 |
+
gpt2_model = None
|
| 23 |
+
from transformers import (
|
| 24 |
+
# GPT2Config,
|
| 25 |
+
# GPT2Tokenizer,
|
| 26 |
+
# GPT2Model,
|
| 27 |
+
BertTokenizer,
|
| 28 |
+
BertModel)
|
| 29 |
+
import torch
|
| 30 |
+
|
| 31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 32 |
+
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
|
| 33 |
+
bert_model = BertModel.from_pretrained('bert-base-multilingual-uncased')
|
| 34 |
+
class_names = {0:'sadness', 1:'joy', 2:'love', 3:'anger', 4:'fear', 5:'surprise'}
|
| 35 |
+
import os
|
| 36 |
+
gpt2_tokenizer = None
|
| 37 |
+
gpt2_model = None
|
| 38 |
+
# gpt2_model = GPT2Model.from_pretrained("gpt2")
|
| 39 |
+
# gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 40 |
+
# gpt2_tokenizer.padding_side = "left"
|
| 41 |
+
# gpt2_tokenizer.pad_token = gpt2_tokenizer.eos_token
|
| 42 |
+
# Define preprocessing function with smaller max length
|
| 43 |
+
def tokenize_sample(texts, tokenizer="bert"):
|
| 44 |
+
if tokenizer == "gpt2":
|
| 45 |
+
return gpt2_tokenizer(texts, padding="max_length", truncation=True, return_tensors='pt', max_length=128)
|
| 46 |
+
return bert_tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=128)
|
| 47 |
+
def get_embeddings(text, model_type="bert"):
|
| 48 |
+
tokenized_text = tokenize_sample(text, model_type)
|
| 49 |
+
if model_type =="gpt2":
|
| 50 |
+
outputs = gpt2_model(**tokenized_text)
|
| 51 |
+
else:
|
| 52 |
+
outputs = bert_model(**tokenized_text)
|
| 53 |
+
embeddings = outputs.last_hidden_state[:, 0, :].detach().numpy() # Get the embeddings for [CLS] token
|
| 54 |
+
return embeddings
|
| 55 |
+
|
| 56 |
+
# path_to_models = ".."
|
| 57 |
+
path_to_models = os.environ['RAILWAY_VOLUME_MOUNT_PATH']+"/storage"
|
| 58 |
+
emotion_classifier_map={
|
| 59 |
+
"Naive Bayes":f"{path_to_models}/models/naive_bayes_model.sav",
|
| 60 |
+
"Logistic Regression":f"{path_to_models}/models/logistic_regression_model.sav",
|
| 61 |
+
"KNN":f"{path_to_models}/models/knn_model.sav",
|
| 62 |
+
"KMeans":f"{path_to_models}/models/kmeans_model.sav",
|
| 63 |
+
"SVM":f"{path_to_models}/models/svm_model.sav",
|
| 64 |
+
"Decision Tree":f"{path_to_models}/models/decision_tree_model.sav",
|
| 65 |
+
"Random Forest":f"{path_to_models}/models/random_forest_model.sav"
|
| 66 |
+
}
|
| 67 |
+
summarizer_map={
|
| 68 |
+
"Bengali":f"{path_to_models}/models/bengali_summarization_model.sav",
|
| 69 |
+
}
|
| 70 |
+
# print(os.listdir())
|
| 71 |
+
# print(os.environ["RAILWAY_VOLUME_MOUNT_PATH"])
|
| 72 |
+
# print(os.listdir(os.environ["RAILWAY_VOLUME_MOUNT_PATH"]+"/storage"))
|
| 73 |
+
summarizer_models=dict()
|
| 74 |
+
for i in summarizer_map:
|
| 75 |
+
with open(summarizer_map[i], 'rb') as file:
|
| 76 |
+
summarizer_models[i] = pickle.load(file)
|
| 77 |
+
emotion_classfier_models=dict()
|
| 78 |
+
for i in emotion_classifier_map:
|
| 79 |
+
with open(emotion_classifier_map[i], 'rb') as file:
|
| 80 |
+
emotion_classfier_models[i] = pickle.load(file)
|
| 81 |
+
def get_emotion_prediction(input, model_name):
|
| 82 |
+
if model_name in emotion_classfier_models:
|
| 83 |
+
return class_names[emotion_classfier_models[model_name].predict(get_embeddings(input))[0]]
|
| 84 |
+
else:
|
| 85 |
+
raise ValueError("Model type should be of the types: {}".format(", ".join(list(emotion_classfier_models.keys()))))
|
| 86 |
+
|
| 87 |
+
def decode_sequence(input_seq, max_summary_len, encoder_model, decoder_model, target_word_index, reverse_target_word_index):
|
| 88 |
+
# Encode the input as state vectors.
|
| 89 |
+
e_out, e_h, e_c = encoder_model.predict(input_seq)
|
| 90 |
+
|
| 91 |
+
# Generate empty target sequence of length 1.
|
| 92 |
+
target_seq = np.zeros((1,1))
|
| 93 |
+
|
| 94 |
+
# Populate the first word of target sequence with the start word.
|
| 95 |
+
target_seq[0, 0] = target_word_index['sostok']
|
| 96 |
+
|
| 97 |
+
stop_condition = False
|
| 98 |
+
decoded_sentence = ''
|
| 99 |
+
while not stop_condition:
|
| 100 |
+
|
| 101 |
+
output_tokens, h, c = decoder_model.predict([target_seq] + [e_out, e_h, e_c])
|
| 102 |
+
|
| 103 |
+
# Sample a token
|
| 104 |
+
sampled_token_index = np.argmax(output_tokens[0, -1, :])
|
| 105 |
+
sampled_token = reverse_target_word_index[sampled_token_index]
|
| 106 |
+
|
| 107 |
+
if(sampled_token!='eostok'):
|
| 108 |
+
decoded_sentence += ' '+sampled_token
|
| 109 |
+
|
| 110 |
+
# Exit condition: either hit max length or find stop word.
|
| 111 |
+
if (sampled_token == 'eostok' or len(decoded_sentence.split()) >= (max_summary_len-1)):
|
| 112 |
+
stop_condition = True
|
| 113 |
+
|
| 114 |
+
# Update the target sequence (of length 1).
|
| 115 |
+
target_seq = np.zeros((1,1))
|
| 116 |
+
target_seq[0, 0] = sampled_token_index
|
| 117 |
+
|
| 118 |
+
# Update internal states
|
| 119 |
+
e_h, e_c = h, c
|
| 120 |
+
|
| 121 |
+
return decoded_sentence
|
| 122 |
+
|
| 123 |
+
def summarize_text(text, x_tokenizer, max_text_len, max_summary_len, encoder_model, decoder_model, target_word_index, reverse_target_word_index):
|
| 124 |
+
tokenized_sentence = pad_sequences(x_tokenizer.texts_to_sequences([text]), maxlen=max_text_len, padding='post')[0]
|
| 125 |
+
return decode_sequence(tokenized_sentence.reshape(1,max_text_len), max_summary_len, encoder_model, decoder_model, target_word_index, reverse_target_word_index)
|
| 126 |
+
|
| 127 |
+
def main():
|
| 128 |
+
list_of_tabs = st.tabs(["Indic Multilingual Text Summarizer", "Indic Multilingual Emotion Detection"])
|
| 129 |
+
# Title of the web app
|
| 130 |
+
with list_of_tabs[0]:
|
| 131 |
+
st.title('Indic Multilingual Text Summarizer')
|
| 132 |
+
# print(os.listdir())
|
| 133 |
+
# print(os.environ["RAILWAY_VOLUME_MOUNT_PATH"])
|
| 134 |
+
# print(os.listdir(os.environ["RAILWAY_VOLUME_MOUNT_PATH"]))
|
| 135 |
+
|
| 136 |
+
# Input text from the user
|
| 137 |
+
input_sentence_emotion = st.text_input('Enter a sentence', key="summarize")
|
| 138 |
+
|
| 139 |
+
# Model selection
|
| 140 |
+
# model_option = st.selectbox('Select the model', list(models.keys()))
|
| 141 |
+
# Result initialization
|
| 142 |
+
result = None
|
| 143 |
+
error = None
|
| 144 |
+
langlist = {"bn": "Bengali"}
|
| 145 |
+
# Prediction button
|
| 146 |
+
if st.button('Summarize'):
|
| 147 |
+
lang = detect(text=input_sentence_emotion, low_memory=False)['lang']
|
| 148 |
+
if lang in langlist:
|
| 149 |
+
result = summarize_text(input_sentence_emotion, summarizer_models[langlist[lang]]["x_tokenizer"], summarizer_models[langlist[lang]]["max_text_len"],summarizer_models[langlist[lang]]['max_summary_len'], summarizer_models[langlist[lang]]['encoder_model'], summarizer_models[langlist[lang]]['decoder_model'], summarizer_models[langlist[lang]]['target_word_index'], summarizer_models[langlist[lang]]['reverse_target_word_index']).replace("start ", "").replace(" end", "")
|
| 150 |
+
else:
|
| 151 |
+
error = f"{iso639.Language.from_part1(lang).name} is not supported.\n List of supported languages: {', '.join(langlist.values())}"
|
| 152 |
+
st.markdown(f"Current language support: Bengali")
|
| 153 |
+
# Display the result
|
| 154 |
+
if result:
|
| 155 |
+
st.success(f'Summary: {result}')
|
| 156 |
+
if error:
|
| 157 |
+
st.error(f'Error: {error}')
|
| 158 |
+
# Credits
|
| 159 |
+
# Credits
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
with list_of_tabs[1]:
|
| 163 |
+
st.title('Indic Multilingual Emotion Detection')
|
| 164 |
+
# print(os.listdir())
|
| 165 |
+
# print(os.environ["RAILWAY_VOLUME_MOUNT_PATH"])
|
| 166 |
+
# print(os.listdir(os.environ["RAILWAY_VOLUME_MOUNT_PATH"]))
|
| 167 |
+
|
| 168 |
+
# Input text from the user
|
| 169 |
+
input_sentence_emotion = st.text_input('Enter a sentence', key="emotion")
|
| 170 |
+
|
| 171 |
+
# Model selection
|
| 172 |
+
model_option = st.selectbox('Select the model', list(emotion_classfier_models.keys()))
|
| 173 |
+
|
| 174 |
+
# Result initialization
|
| 175 |
+
result = None
|
| 176 |
+
error = None
|
| 177 |
+
langlist = {"hi": "Hindi"}
|
| 178 |
+
# Prediction button
|
| 179 |
+
if st.button('Predict Emotion'):
|
| 180 |
+
lang = detect(text=input_sentence_emotion, low_memory=False)['lang']
|
| 181 |
+
if lang in langlist:
|
| 182 |
+
result = get_emotion_prediction(input_sentence_emotion, model_option)
|
| 183 |
+
else:
|
| 184 |
+
error = f"{iso639.Language.from_part1(lang).name} is not supported.\n List of supported languages: {', '.join(langlist.values())}"
|
| 185 |
+
st.markdown(f"Current language support: Hindi")
|
| 186 |
+
# Display the result
|
| 187 |
+
if result:
|
| 188 |
+
st.success(f'Prediction: {result}')
|
| 189 |
+
if error:
|
| 190 |
+
st.error(f'Error: {error}')
|
| 191 |
+
# Credits
|
| 192 |
+
# Credits
|
| 193 |
+
st.markdown("---") # Separator
|
| 194 |
+
st.markdown("""## Contributors
|
| 195 |
+
- Bishwaraj Paul
|
| 196 |
+
**Role** Intern
|
| 197 |
+
**Email:** bishwaraj.paul98@gmail.com
|
| 198 |
+
- Dr. Sahinur Rahman Laskar
|
| 199 |
+
**Role:** Mentor
|
| 200 |
+
Assistant Professor
|
| 201 |
+
School of Computer Science, UPES, Dehradun, India
|
| 202 |
+
**Email:** sahinurlaskar.nits@gmail.com / sahinur.laskar@ddn.upes.ac.in""")
|
| 203 |
+
footer = """<style>
|
| 204 |
+
.footer-text{
|
| 205 |
+
-webkit-text-size-adjust: 100%;
|
| 206 |
+
-webkit-tap-highlight-color: transparent;
|
| 207 |
+
--blue: #007bff;
|
| 208 |
+
--indigo: #6610f2;
|
| 209 |
+
--purple: #6f42c1;
|
| 210 |
+
--pink: #e83e8c;
|
| 211 |
+
--red: #dc3545;
|
| 212 |
+
--orange: #fd7e14;
|
| 213 |
+
--yellow: #ffc107;
|
| 214 |
+
--green: #28a745;
|
| 215 |
+
--teal: #20c997;
|
| 216 |
+
--cyan: #17a2b8;
|
| 217 |
+
--white: #fff;
|
| 218 |
+
--gray: #6c757d;
|
| 219 |
+
--gray-dark: #343a40;
|
| 220 |
+
--primary: #007bff;
|
| 221 |
+
--secondary: #6c757d;
|
| 222 |
+
--success: #28a745;
|
| 223 |
+
--info: #17a2b8;
|
| 224 |
+
--warning: #ffc107;
|
| 225 |
+
--danger: #dc3545;
|
| 226 |
+
--light: #f8f9fa;
|
| 227 |
+
--dark: #343a40;
|
| 228 |
+
--breakpoint-xs: 0;
|
| 229 |
+
--breakpoint-sm: 576px;
|
| 230 |
+
--breakpoint-md: 768px;
|
| 231 |
+
--breakpoint-lg: 992px;
|
| 232 |
+
--breakpoint-xl: 1200px;
|
| 233 |
+
--font-family-sans-serif: -apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";
|
| 234 |
+
--font-family-monospace: SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;
|
| 235 |
+
font-size: 16px;
|
| 236 |
+
font-weight: 400;
|
| 237 |
+
line-height: 24px;
|
| 238 |
+
letter-spacing: 1px;
|
| 239 |
+
font-family: 'Raleway', sans-serif;
|
| 240 |
+
color: #666;
|
| 241 |
+
box-sizing: border-box;
|
| 242 |
+
text-align: center!important;
|
| 243 |
+
}
|
| 244 |
+
@media (min-width: 576px) {
|
| 245 |
+
.col-sm-12 {
|
| 246 |
+
-webkit-box-flex: 0;
|
| 247 |
+
-ms-flex: 0 0 100%;
|
| 248 |
+
flex: 0 0 100%;
|
| 249 |
+
max-width: 100%;
|
| 250 |
+
}
|
| 251 |
+
}
|
| 252 |
+
.row {
|
| 253 |
+
display: -webkit-box;
|
| 254 |
+
display: -ms-flexbox;
|
| 255 |
+
display: flex;
|
| 256 |
+
-ms-flex-wrap: wrap;
|
| 257 |
+
flex-wrap: wrap;
|
| 258 |
+
margin-right: -15px;
|
| 259 |
+
margin-left: -15px;
|
| 260 |
+
}
|
| 261 |
+
@media (min-width: 1200px) {
|
| 262 |
+
.container {
|
| 263 |
+
max-width: 1140px;
|
| 264 |
+
}
|
| 265 |
+
}
|
| 266 |
+
@media (min-width: 992px) {
|
| 267 |
+
.container {
|
| 268 |
+
max-width: 960px;
|
| 269 |
+
}
|
| 270 |
+
}
|
| 271 |
+
@media (min-width: 768px) {
|
| 272 |
+
.container {
|
| 273 |
+
max-width: 720px;
|
| 274 |
+
}
|
| 275 |
+
}
|
| 276 |
+
@media (min-width: 576px) {
|
| 277 |
+
.container {
|
| 278 |
+
max-width: 540px;
|
| 279 |
+
}
|
| 280 |
+
}
|
| 281 |
+
.container {
|
| 282 |
+
width: 100%;
|
| 283 |
+
padding-right: 15px;
|
| 284 |
+
padding-left: 15px;
|
| 285 |
+
margin-right: auto;
|
| 286 |
+
margin-left: auto;
|
| 287 |
+
}
|
| 288 |
+
.footer-bottom-area {
|
| 289 |
+
padding: 30px 0;
|
| 290 |
+
display: block;
|
| 291 |
+
box-sizing: border-box;
|
| 292 |
+
}
|
| 293 |
+
.footer-bottom-bg {
|
| 294 |
+
background: #222;
|
| 295 |
+
}
|
| 296 |
+
</style>
|
| 297 |
+
<footer class="footer-bottom-area footer-bottom-bg">
|
| 298 |
+
<div class="container">
|
| 299 |
+
<div class="row">
|
| 300 |
+
<div class="col-sm-12">
|
| 301 |
+
<div class="footer-text">
|
| 302 |
+
<p style="color: white; font-style: sans-serif;"><span>Bahash Private Limited</span> ©2024 - All Right Reserved.</p>
|
| 303 |
+
</div>
|
| 304 |
+
</div>
|
| 305 |
+
</div>
|
| 306 |
+
</div>
|
| 307 |
+
</footer>
|
| 308 |
+
"""
|
| 309 |
+
components.html(footer)
|
| 310 |
+
# Handling query parameters
|
| 311 |
+
query = st.experimental_get_query_params()
|
| 312 |
+
try:
|
| 313 |
+
## Look-up the tab from the query
|
| 314 |
+
index_tab = query["tab"][0]
|
| 315 |
+
## Click on that tab
|
| 316 |
+
js = f"""
|
| 317 |
+
<script>
|
| 318 |
+
var tab = window.parent.document.getElementById('tabs-bui2-tab-{index_tab}');
|
| 319 |
+
tab.click();
|
| 320 |
+
</script>
|
| 321 |
+
"""
|
| 322 |
+
st.components.v1.html(js)
|
| 323 |
+
|
| 324 |
+
except ValueError:
|
| 325 |
+
## Do nothing if the query parameter does not correspond to any of the tabs
|
| 326 |
+
pass
|
| 327 |
+
|
| 328 |
+
if __name__ == '__main__':
|
| 329 |
+
main()
|
test.js
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
< !doctype html > <html lang="en"><head><meta charset="UTF-8" /><meta name="viewport" content="width=device-width,initial-scale=1,shrink-to-fit=no" /><link rel="shortcut icon" href="./favicon.png" /><link rel="preload" href="./static/media/SourceSansPro-Regular.0d69e5ff5e92ac64a0c9.woff2" as="font" type="font/woff2" crossorigin><link rel="preload" href="./static/media/SourceSansPro-SemiBold.abed79cd0df1827e18cf.woff2" as="font" type="font/woff2" crossorigin><link rel="preload" href="./static/media/SourceSansPro-Bold.118dea98980e20a81ced.woff2" as="font" type="font/woff2" crossorigin><title>Streamlit</title><script>window.prerenderReady=!1</script><script defer="defer" src="./static/js/main.d55f6a3c.js"></script><link href="./static/css/main.29bca1b5.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div></body></html>
|