Spaces:
Running
Running
Improve visualizer performance.
Browse files- src/visualizer.py +143 -87
src/visualizer.py
CHANGED
|
@@ -2,10 +2,9 @@ import dash
|
|
| 2 |
from dash import dcc, html
|
| 3 |
from dash.dependencies import Input, Output
|
| 4 |
import plotly.graph_objects as go
|
| 5 |
-
import
|
| 6 |
-
from typing import List, Dict, Literal, Optional
|
| 7 |
from tqdm import tqdm
|
| 8 |
-
import
|
| 9 |
|
| 10 |
from src.execution_model import Schedule
|
| 11 |
|
|
@@ -40,6 +39,49 @@ def convert_schedule_to_visualization_format(schedule: Schedule):
|
|
| 40 |
return visualization_data
|
| 41 |
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None, show_progress=True):
|
| 44 |
"""
|
| 45 |
Create a Plotly figure for pipeline parallelism scheduling.
|
|
@@ -51,49 +93,9 @@ def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None,
|
|
| 51 |
"""
|
| 52 |
# Find the number of devices
|
| 53 |
num_devices = len(schedule_data)
|
| 54 |
-
|
| 55 |
empty_color = "whitesmoke"
|
| 56 |
-
|
| 57 |
-
def get_color(op_type: str, stage_id: int):
|
| 58 |
-
# Color palettes for different virtual stages
|
| 59 |
-
forward_colors = [
|
| 60 |
-
"royalblue", # Stage 0
|
| 61 |
-
"lightskyblue", # Stage 1
|
| 62 |
-
"cornflowerblue", # Stage 2
|
| 63 |
-
"steelblue", # Stage 3
|
| 64 |
-
"dodgerblue", # Stage 4
|
| 65 |
-
"deepskyblue", # Stage 5
|
| 66 |
-
"mediumblue", # Stage 6
|
| 67 |
-
"mediumslateblue",# Stage 7
|
| 68 |
-
"slateblue", # Stage 8
|
| 69 |
-
"darkslateblue" # Stage 9
|
| 70 |
-
]
|
| 71 |
-
|
| 72 |
-
backward_colors = [
|
| 73 |
-
"lightgreen", # Stage 0
|
| 74 |
-
"mediumseagreen", # Stage 1
|
| 75 |
-
"seagreen", # Stage 2
|
| 76 |
-
"lightseagreen", # Stage 3
|
| 77 |
-
"mediumaquamarine", # Stage 4
|
| 78 |
-
"mediumspringgreen", # Stage 5
|
| 79 |
-
"springgreen", # Stage 6
|
| 80 |
-
"palegreen", # Stage 7
|
| 81 |
-
"limegreen", # Stage 8
|
| 82 |
-
"forestgreen" # Stage 9
|
| 83 |
-
]
|
| 84 |
-
|
| 85 |
-
virtual_stage = stage_id // num_devices
|
| 86 |
-
|
| 87 |
-
# If virtual_stage is beyond our color list, cycle through the colors
|
| 88 |
-
color_index = virtual_stage % len(forward_colors)
|
| 89 |
-
|
| 90 |
-
if op_type == "forward":
|
| 91 |
-
return forward_colors[color_index]
|
| 92 |
-
elif op_type == "backward":
|
| 93 |
-
return backward_colors[color_index]
|
| 94 |
-
else:
|
| 95 |
-
raise ValueError(f"Invalid operation type: {op_type}")
|
| 96 |
-
|
| 97 |
# Find the maximum time in the schedule if not provided
|
| 98 |
if max_time is None:
|
| 99 |
max_time = 0
|
|
@@ -116,6 +118,11 @@ def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None,
|
|
| 116 |
# Create a custom y-axis with no gaps between devices
|
| 117 |
y_spacing = 1.0 # Use 1.0 for no gaps
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
# Add rectangles for each task
|
| 120 |
for device_idx, device in enumerate(schedule_data):
|
| 121 |
device_idx_reversed = num_devices - device_idx - 1
|
|
@@ -126,11 +133,11 @@ def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None,
|
|
| 126 |
for task in sorted_tasks:
|
| 127 |
# Determine task color and text color
|
| 128 |
if task["type"] == "forward":
|
| 129 |
-
color = get_color(task["type"], task["stage"])
|
| 130 |
text_color = "white"
|
| 131 |
name = "Forward"
|
| 132 |
elif task["type"] == "backward":
|
| 133 |
-
color = get_color(task["type"], task["stage"])
|
| 134 |
text_color = "black"
|
| 135 |
name = "Backward"
|
| 136 |
else:
|
|
@@ -145,8 +152,8 @@ def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None,
|
|
| 145 |
# Calculate y positions with no gaps
|
| 146 |
y_pos = device_idx_reversed * y_spacing
|
| 147 |
|
| 148 |
-
# Create rectangle using shape
|
| 149 |
-
|
| 150 |
type="rect",
|
| 151 |
x0=start_time,
|
| 152 |
y0=y_pos - 0.5,
|
|
@@ -155,25 +162,27 @@ def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None,
|
|
| 155 |
line=dict(color="black", width=0.5),
|
| 156 |
fillcolor=color,
|
| 157 |
layer="above",
|
| 158 |
-
)
|
| 159 |
|
| 160 |
-
# Add batch number text
|
| 161 |
-
|
| 162 |
x=start_time + duration / 2,
|
| 163 |
y=y_pos,
|
| 164 |
-
text=f"{task['batch']}",
|
| 165 |
showarrow=False,
|
| 166 |
-
font=dict(color=text_color, size=12, family="Arial, bold"),
|
| 167 |
-
)
|
| 168 |
|
| 169 |
-
#
|
| 170 |
-
|
|
|
|
|
|
|
| 171 |
x=[start_time + duration / 2],
|
| 172 |
y=[y_pos],
|
| 173 |
mode='markers',
|
| 174 |
marker=dict(opacity=0), # Invisible marker
|
| 175 |
hoverinfo='text',
|
| 176 |
-
text=
|
| 177 |
showlegend=False
|
| 178 |
))
|
| 179 |
|
|
@@ -182,6 +191,16 @@ def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None,
|
|
| 182 |
tasks_processed += 1
|
| 183 |
progress_bar.update(1)
|
| 184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
# Add custom legend
|
| 186 |
legend_items = []
|
| 187 |
|
|
@@ -196,18 +215,18 @@ def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None,
|
|
| 196 |
for vs in range(max_virtual_stage + 1):
|
| 197 |
legend_items.append(dict(
|
| 198 |
name=f"Forward (VS {vs})",
|
| 199 |
-
color=get_color("forward", vs * num_devices)
|
| 200 |
))
|
| 201 |
legend_items.append(dict(
|
| 202 |
name=f"Backward (VS {vs})",
|
| 203 |
-
color=get_color("backward", vs * num_devices)
|
| 204 |
))
|
| 205 |
|
| 206 |
# If no tasks found, add default legend items
|
| 207 |
if not legend_items:
|
| 208 |
legend_items = [
|
| 209 |
-
dict(name="Forward (VS 0)", color=get_color("forward", 0)),
|
| 210 |
-
dict(name="Backward (VS 0)", color=get_color("backward", 0)),
|
| 211 |
]
|
| 212 |
|
| 213 |
for i, item in enumerate(legend_items):
|
|
@@ -232,6 +251,8 @@ def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None,
|
|
| 232 |
# Adjust the range to ensure there are no empty spaces at the end
|
| 233 |
x_end = max_time * 1.05 # Add a small margin
|
| 234 |
|
|
|
|
|
|
|
| 235 |
fig.update_layout(
|
| 236 |
yaxis=dict(
|
| 237 |
tickmode="array",
|
|
@@ -243,7 +264,7 @@ def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None,
|
|
| 243 |
margin=dict(l=50, r=20, t=40, b=40),
|
| 244 |
plot_bgcolor="white",
|
| 245 |
title=dict(
|
| 246 |
-
text=
|
| 247 |
x=0.5,
|
| 248 |
y=0.98, # Move title position closer to the top
|
| 249 |
font=dict(size=20)
|
|
@@ -271,51 +292,84 @@ def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None,
|
|
| 271 |
return fig
|
| 272 |
|
| 273 |
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
| 275 |
"""
|
| 276 |
Create a Dash app to visualize the pipeline schedule.
|
| 277 |
|
| 278 |
Args:
|
| 279 |
schedule: Schedule object to visualize
|
| 280 |
-
schedule_type: Type of schedule ("1f1b" or
|
|
|
|
| 281 |
"""
|
| 282 |
-
#
|
| 283 |
-
|
|
|
|
| 284 |
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
app.layout = html.Div([
|
| 289 |
-
html.H1(f"Pipeline Parallelism
|
| 290 |
|
| 291 |
html.Div([
|
| 292 |
-
html.
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
html.Li(f"Number of devices: {schedule.config.num_devices}"),
|
| 296 |
-
html.Li(f"Number of stages: {schedule.config.num_stages}"),
|
| 297 |
-
html.Li(f"Number of batches: {schedule.config.num_batches}"),
|
| 298 |
-
]),
|
| 299 |
-
], className="config-section"),
|
| 300 |
-
|
| 301 |
-
], style={'margin': '20px'}),
|
| 302 |
|
| 303 |
html.Div(id="graph-container", children=[]),
|
| 304 |
|
| 305 |
-
dcc.
|
| 306 |
-
id="
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
),
|
| 309 |
])
|
| 310 |
|
|
|
|
|
|
|
|
|
|
| 311 |
@app.callback(
|
| 312 |
Output("pipeline-graph", "figure"),
|
| 313 |
Input("graph-container", "children"),
|
| 314 |
prevent_initial_call=False,
|
| 315 |
)
|
| 316 |
def load_graph(_):
|
| 317 |
-
#
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
return app
|
| 321 |
|
|
@@ -323,7 +377,8 @@ def create_dash_app(schedule: Schedule, schedule_type="1f1b"):
|
|
| 323 |
def visualize_pipeline_parallelism_dash(
|
| 324 |
schedule: Schedule,
|
| 325 |
port: int = 8050,
|
| 326 |
-
debug: bool = False
|
|
|
|
| 327 |
):
|
| 328 |
"""
|
| 329 |
Launch a Dash app to visualize the pipeline schedule interactively.
|
|
@@ -332,7 +387,8 @@ def visualize_pipeline_parallelism_dash(
|
|
| 332 |
schedule: Schedule object to visualize
|
| 333 |
port: Port to run the Dash app on
|
| 334 |
debug: Whether to run the Dash app in debug mode
|
|
|
|
| 335 |
"""
|
| 336 |
-
app = create_dash_app(schedule)
|
| 337 |
print(f"Starting Dash app on http://localhost:{port}/")
|
| 338 |
app.run_server(debug=debug, port=port)
|
|
|
|
| 2 |
from dash import dcc, html
|
| 3 |
from dash.dependencies import Input, Output
|
| 4 |
import plotly.graph_objects as go
|
| 5 |
+
from typing import List, Dict
|
|
|
|
| 6 |
from tqdm import tqdm
|
| 7 |
+
from functools import lru_cache
|
| 8 |
|
| 9 |
from src.execution_model import Schedule
|
| 10 |
|
|
|
|
| 39 |
return visualization_data
|
| 40 |
|
| 41 |
|
| 42 |
+
# Cache the color calculation as it's repeatedly called with the same parameters
|
| 43 |
+
@lru_cache(maxsize=128)
|
| 44 |
+
def get_color(op_type: str, stage_id: int, num_devices: int):
|
| 45 |
+
# Color palettes for different virtual stages
|
| 46 |
+
forward_colors = [
|
| 47 |
+
"royalblue", # Stage 0
|
| 48 |
+
"lightskyblue", # Stage 1
|
| 49 |
+
"cornflowerblue", # Stage 2
|
| 50 |
+
"steelblue", # Stage 3
|
| 51 |
+
"dodgerblue", # Stage 4
|
| 52 |
+
"deepskyblue", # Stage 5
|
| 53 |
+
"mediumblue", # Stage 6
|
| 54 |
+
"mediumslateblue",# Stage 7
|
| 55 |
+
"slateblue", # Stage 8
|
| 56 |
+
"darkslateblue" # Stage 9
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
backward_colors = [
|
| 60 |
+
"lightgreen", # Stage 0
|
| 61 |
+
"mediumseagreen", # Stage 1
|
| 62 |
+
"seagreen", # Stage 2
|
| 63 |
+
"lightseagreen", # Stage 3
|
| 64 |
+
"mediumaquamarine", # Stage 4
|
| 65 |
+
"mediumspringgreen", # Stage 5
|
| 66 |
+
"springgreen", # Stage 6
|
| 67 |
+
"palegreen", # Stage 7
|
| 68 |
+
"limegreen", # Stage 8
|
| 69 |
+
"forestgreen" # Stage 9
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
virtual_stage = stage_id // num_devices
|
| 73 |
+
|
| 74 |
+
# If virtual_stage is beyond our color list, cycle through the colors
|
| 75 |
+
color_index = virtual_stage % len(forward_colors)
|
| 76 |
+
|
| 77 |
+
if op_type == "forward":
|
| 78 |
+
return forward_colors[color_index]
|
| 79 |
+
elif op_type == "backward":
|
| 80 |
+
return backward_colors[color_index]
|
| 81 |
+
else:
|
| 82 |
+
raise ValueError(f"Invalid operation type: {op_type}")
|
| 83 |
+
|
| 84 |
+
|
| 85 |
def create_pipeline_figure(schedule_data: Dict[int, List[Dict]], max_time=None, show_progress=True):
|
| 86 |
"""
|
| 87 |
Create a Plotly figure for pipeline parallelism scheduling.
|
|
|
|
| 93 |
"""
|
| 94 |
# Find the number of devices
|
| 95 |
num_devices = len(schedule_data)
|
| 96 |
+
|
| 97 |
empty_color = "whitesmoke"
|
| 98 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
# Find the maximum time in the schedule if not provided
|
| 100 |
if max_time is None:
|
| 101 |
max_time = 0
|
|
|
|
| 118 |
# Create a custom y-axis with no gaps between devices
|
| 119 |
y_spacing = 1.0 # Use 1.0 for no gaps
|
| 120 |
|
| 121 |
+
# Batch processing for increased performance
|
| 122 |
+
shapes = []
|
| 123 |
+
annotations = []
|
| 124 |
+
hover_traces = []
|
| 125 |
+
|
| 126 |
# Add rectangles for each task
|
| 127 |
for device_idx, device in enumerate(schedule_data):
|
| 128 |
device_idx_reversed = num_devices - device_idx - 1
|
|
|
|
| 133 |
for task in sorted_tasks:
|
| 134 |
# Determine task color and text color
|
| 135 |
if task["type"] == "forward":
|
| 136 |
+
color = get_color(task["type"], task["stage"], num_devices)
|
| 137 |
text_color = "white"
|
| 138 |
name = "Forward"
|
| 139 |
elif task["type"] == "backward":
|
| 140 |
+
color = get_color(task["type"], task["stage"], num_devices)
|
| 141 |
text_color = "black"
|
| 142 |
name = "Backward"
|
| 143 |
else:
|
|
|
|
| 152 |
# Calculate y positions with no gaps
|
| 153 |
y_pos = device_idx_reversed * y_spacing
|
| 154 |
|
| 155 |
+
# Create rectangle using shape (batch-add later)
|
| 156 |
+
shapes.append(dict(
|
| 157 |
type="rect",
|
| 158 |
x0=start_time,
|
| 159 |
y0=y_pos - 0.5,
|
|
|
|
| 162 |
line=dict(color="black", width=0.5),
|
| 163 |
fillcolor=color,
|
| 164 |
layer="above",
|
| 165 |
+
))
|
| 166 |
|
| 167 |
+
# Add batch number text (batch-add later)
|
| 168 |
+
annotations.append(dict(
|
| 169 |
x=start_time + duration / 2,
|
| 170 |
y=y_pos,
|
| 171 |
+
text=f"{task['batch']}",
|
| 172 |
showarrow=False,
|
| 173 |
+
font=dict(color=text_color, size=12, family="Arial, bold"),
|
| 174 |
+
))
|
| 175 |
|
| 176 |
+
# Prepare hover data (add traces in batches later)
|
| 177 |
+
hover_text = f"Batch: {task['batch']}<br>Stage: {task['stage']}<br>Type: {name}<br>Start: {task['start_time']:.2f}<br>End: {task['start_time'] + task['duration']:.2f}<br>Duration: {task['duration']:.2f}"
|
| 178 |
+
|
| 179 |
+
hover_traces.append(dict(
|
| 180 |
x=[start_time + duration / 2],
|
| 181 |
y=[y_pos],
|
| 182 |
mode='markers',
|
| 183 |
marker=dict(opacity=0), # Invisible marker
|
| 184 |
hoverinfo='text',
|
| 185 |
+
text=hover_text,
|
| 186 |
showlegend=False
|
| 187 |
))
|
| 188 |
|
|
|
|
| 191 |
tasks_processed += 1
|
| 192 |
progress_bar.update(1)
|
| 193 |
|
| 194 |
+
# Add all shapes at once for better performance
|
| 195 |
+
fig.update_layout(shapes=shapes)
|
| 196 |
+
|
| 197 |
+
# Add all annotations at once
|
| 198 |
+
fig.update_layout(annotations=annotations)
|
| 199 |
+
|
| 200 |
+
# Add all hover traces at once
|
| 201 |
+
for trace in hover_traces:
|
| 202 |
+
fig.add_trace(go.Scatter(**trace))
|
| 203 |
+
|
| 204 |
# Add custom legend
|
| 205 |
legend_items = []
|
| 206 |
|
|
|
|
| 215 |
for vs in range(max_virtual_stage + 1):
|
| 216 |
legend_items.append(dict(
|
| 217 |
name=f"Forward (VS {vs})",
|
| 218 |
+
color=get_color("forward", vs * num_devices, num_devices)
|
| 219 |
))
|
| 220 |
legend_items.append(dict(
|
| 221 |
name=f"Backward (VS {vs})",
|
| 222 |
+
color=get_color("backward", vs * num_devices, num_devices)
|
| 223 |
))
|
| 224 |
|
| 225 |
# If no tasks found, add default legend items
|
| 226 |
if not legend_items:
|
| 227 |
legend_items = [
|
| 228 |
+
dict(name="Forward (VS 0)", color=get_color("forward", 0, num_devices)),
|
| 229 |
+
dict(name="Backward (VS 0)", color=get_color("backward", 0, num_devices)),
|
| 230 |
]
|
| 231 |
|
| 232 |
for i, item in enumerate(legend_items):
|
|
|
|
| 251 |
# Adjust the range to ensure there are no empty spaces at the end
|
| 252 |
x_end = max_time * 1.05 # Add a small margin
|
| 253 |
|
| 254 |
+
title_text = "Pipeline Parallelism Schedule"
|
| 255 |
+
|
| 256 |
fig.update_layout(
|
| 257 |
yaxis=dict(
|
| 258 |
tickmode="array",
|
|
|
|
| 264 |
margin=dict(l=50, r=20, t=40, b=40),
|
| 265 |
plot_bgcolor="white",
|
| 266 |
title=dict(
|
| 267 |
+
text=title_text,
|
| 268 |
x=0.5,
|
| 269 |
y=0.98, # Move title position closer to the top
|
| 270 |
font=dict(size=20)
|
|
|
|
| 292 |
return fig
|
| 293 |
|
| 294 |
|
| 295 |
+
# Cache for storing processed schedule data
|
| 296 |
+
_schedule_data_cache = {}
|
| 297 |
+
|
| 298 |
+
def create_dash_app(schedule: Schedule, schedule_type="1f1b", enable_caching: bool = True):
|
| 299 |
"""
|
| 300 |
Create a Dash app to visualize the pipeline schedule.
|
| 301 |
|
| 302 |
Args:
|
| 303 |
schedule: Schedule object to visualize
|
| 304 |
+
schedule_type: Type of schedule ("1f1b" or custom description)
|
| 305 |
+
enable_caching: Whether to cache the schedule data and figure
|
| 306 |
"""
|
| 307 |
+
# Process schedule data only once and cache it
|
| 308 |
+
global _schedule_data_cache
|
| 309 |
+
cache_key = id(schedule)
|
| 310 |
|
| 311 |
+
if enable_caching and cache_key in _schedule_data_cache:
|
| 312 |
+
schedule_data = _schedule_data_cache[cache_key]
|
| 313 |
+
print("Using cached schedule data")
|
| 314 |
+
else:
|
| 315 |
+
schedule_data = convert_schedule_to_visualization_format(schedule)
|
| 316 |
+
if enable_caching:
|
| 317 |
+
_schedule_data_cache[cache_key] = schedule_data
|
| 318 |
+
print("Cached schedule data")
|
| 319 |
|
| 320 |
+
total_tasks = sum(len(tasks) for tasks in schedule_data.values())
|
| 321 |
+
print(f"Total tasks in schedule: {total_tasks}")
|
| 322 |
+
|
| 323 |
+
app = dash.Dash(__name__)
|
| 324 |
+
app.title = f"Pipeline Parallelism Visualization - {schedule_type}"
|
| 325 |
+
|
| 326 |
+
# Create a more informative layout with data size information
|
| 327 |
app.layout = html.Div([
|
| 328 |
+
html.H1(f"Pipeline Parallelism Visualization - {schedule_type}", style={"textAlign": "center"}),
|
| 329 |
|
| 330 |
html.Div([
|
| 331 |
+
html.P(f"Number of devices: {len(schedule_data)}", style={"display": "inline-block", "marginRight": "20px"}),
|
| 332 |
+
html.P(f"Total tasks: {total_tasks}", style={"display": "inline-block", "marginRight": "20px"}),
|
| 333 |
+
], style={"marginBottom": "20px"}),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
html.Div(id="graph-container", children=[]),
|
| 336 |
|
| 337 |
+
dcc.Loading(
|
| 338 |
+
id="loading-graph",
|
| 339 |
+
type="circle",
|
| 340 |
+
children=[
|
| 341 |
+
dcc.Graph(
|
| 342 |
+
id="pipeline-graph",
|
| 343 |
+
config={'displayModeBar': True, 'toImageButtonOptions': {'format': 'png', 'filename': 'pipeline_visualization'}}
|
| 344 |
+
),
|
| 345 |
+
]
|
| 346 |
),
|
| 347 |
])
|
| 348 |
|
| 349 |
+
# Cache for storing figure to avoid regenerating it
|
| 350 |
+
figure_cache = {}
|
| 351 |
+
|
| 352 |
@app.callback(
|
| 353 |
Output("pipeline-graph", "figure"),
|
| 354 |
Input("graph-container", "children"),
|
| 355 |
prevent_initial_call=False,
|
| 356 |
)
|
| 357 |
def load_graph(_):
|
| 358 |
+
# Use cached figure if available
|
| 359 |
+
cache_key = f"{id(schedule)}"
|
| 360 |
+
if enable_caching and cache_key in figure_cache:
|
| 361 |
+
print("Using cached figure")
|
| 362 |
+
return figure_cache[cache_key]
|
| 363 |
+
|
| 364 |
+
# Create the figure
|
| 365 |
+
figure = create_pipeline_figure(schedule_data, show_progress=True)
|
| 366 |
+
|
| 367 |
+
# Cache the figure
|
| 368 |
+
if enable_caching:
|
| 369 |
+
figure_cache[cache_key] = figure
|
| 370 |
+
print("Cached figure")
|
| 371 |
+
|
| 372 |
+
return figure
|
| 373 |
|
| 374 |
return app
|
| 375 |
|
|
|
|
| 377 |
def visualize_pipeline_parallelism_dash(
|
| 378 |
schedule: Schedule,
|
| 379 |
port: int = 8050,
|
| 380 |
+
debug: bool = False,
|
| 381 |
+
enable_caching: bool = True
|
| 382 |
):
|
| 383 |
"""
|
| 384 |
Launch a Dash app to visualize the pipeline schedule interactively.
|
|
|
|
| 387 |
schedule: Schedule object to visualize
|
| 388 |
port: Port to run the Dash app on
|
| 389 |
debug: Whether to run the Dash app in debug mode
|
| 390 |
+
enable_caching: Whether to cache schedule data and figures
|
| 391 |
"""
|
| 392 |
+
app = create_dash_app(schedule, enable_caching=enable_caching)
|
| 393 |
print(f"Starting Dash app on http://localhost:{port}/")
|
| 394 |
app.run_server(debug=debug, port=port)
|