Spaces:
Running
Running
Update implementation for 1F1B overlapping.
Browse files- README.md +1 -1
- main.py +2 -1
- src/execution_model.py +78 -16
- src/strategies.py +20 -22
- src/visualizer.py +15 -1
README.md
CHANGED
|
@@ -52,7 +52,7 @@ uv run python main.py strategy=zb1p num_devices=4 num_stages=4 num_batches=8
|
|
| 52 |
|
| 53 |
|
| 54 |
Running for 1F1B-batch-overlap strategy:
|
| 55 |
-
```
|
| 56 |
uv run python main.py strategy=1f1b_overlap num_devices=4 num_stages=4 num_batches=8
|
| 57 |
```
|
| 58 |

|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
Running for 1F1B-batch-overlap strategy:
|
| 55 |
+
```bash
|
| 56 |
uv run python main.py strategy=1f1b_overlap num_devices=4 num_stages=4 num_batches=8
|
| 57 |
```
|
| 58 |

|
main.py
CHANGED
|
@@ -105,7 +105,8 @@ def run_1f1b_overlap(cfg: DictConfig) -> None:
|
|
| 105 |
)
|
| 106 |
schedule = generate_1f1b_overlap_schedule(schedule_config)
|
| 107 |
schedule.execute()
|
| 108 |
-
|
|
|
|
| 109 |
|
| 110 |
|
| 111 |
if __name__ == "__main__":
|
|
|
|
| 105 |
)
|
| 106 |
schedule = generate_1f1b_overlap_schedule(schedule_config)
|
| 107 |
schedule.execute()
|
| 108 |
+
schedule.show()
|
| 109 |
+
# visualize_pipeline_parallelism_dash(schedule, port=cfg.visualization_port)
|
| 110 |
|
| 111 |
|
| 112 |
if __name__ == "__main__":
|
src/execution_model.py
CHANGED
|
@@ -13,7 +13,52 @@ class Operation:
|
|
| 13 |
|
| 14 |
self.start_time = None
|
| 15 |
self.end_time = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
class DeviceQueue:
|
| 19 |
def __init__(self, stages: List[int], device_id: int):
|
|
@@ -45,6 +90,7 @@ class ScheduleConfig:
|
|
| 45 |
self.p2p_latency = p2p_latency
|
| 46 |
self.placement_strategy = placement_strategy
|
| 47 |
self.split_backward = split_backward
|
|
|
|
| 48 |
|
| 49 |
# Initialize default operation times
|
| 50 |
if self.split_backward:
|
|
@@ -104,9 +150,20 @@ class ScheduleConfig:
|
|
| 104 |
raise ValueError(f"Invalid placement strategy: {self.placement_strategy}")
|
| 105 |
|
| 106 |
def get_op_time(self, op_type: str, stage_id: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
if op_type not in self.op_times:
|
| 108 |
raise ValueError(f"Invalid operation type: {op_type}")
|
| 109 |
-
|
| 110 |
times = self.op_times[op_type]
|
| 111 |
if isinstance(times, dict):
|
| 112 |
# If we have stage-specific times, use those
|
|
@@ -121,9 +178,9 @@ class ScheduleConfig:
|
|
| 121 |
class Schedule:
|
| 122 |
def __init__(self, config: ScheduleConfig):
|
| 123 |
self.ops = {} # (batch_id, stage_id, op_type) -> Operation
|
| 124 |
-
self.
|
| 125 |
for dev_id in range(config.num_devices):
|
| 126 |
-
self.
|
| 127 |
self.config = config
|
| 128 |
|
| 129 |
self.init_operations()
|
|
@@ -142,7 +199,7 @@ class Schedule:
|
|
| 142 |
def get_op(self, batch_id: int, stage_id: int, op_type: str):
|
| 143 |
return self.ops[(batch_id, stage_id, op_type)]
|
| 144 |
|
| 145 |
-
def get_dependencies(self, op: Operation):
|
| 146 |
deps = []
|
| 147 |
if op.op_type == "forward":
|
| 148 |
if op.stage_id > 0:
|
|
@@ -179,9 +236,10 @@ class Schedule:
|
|
| 179 |
)
|
| 180 |
)
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
| 185 |
return deps
|
| 186 |
|
| 187 |
def show(self):
|
|
@@ -192,12 +250,12 @@ class Schedule:
|
|
| 192 |
print("\n=== DEVICE QUEUES ===")
|
| 193 |
|
| 194 |
for dev_id in range(self.config.num_devices):
|
| 195 |
-
print(f"\nDEVICE {dev_id} (Stages: {self.
|
| 196 |
print("-" * 80)
|
| 197 |
print(f"{'Batch':^6} | {'Stage':^6} | {'Type':^10} | {'Start':^10} | {'End':^10} | {'Duration':^10}")
|
| 198 |
print("-" * 80)
|
| 199 |
|
| 200 |
-
for op in self.
|
| 201 |
op_type = op.op_type
|
| 202 |
start = f"{op.start_time:.2f}" if op.start_time is not None else "N/A"
|
| 203 |
end = f"{op.end_time:.2f}" if op.end_time is not None else "N/A"
|
|
@@ -207,7 +265,7 @@ class Schedule:
|
|
| 207 |
duration = f"{op.end_time - op.start_time:.2f}"
|
| 208 |
|
| 209 |
print(f"{op.batch_id:^6} | {op.stage_id:^6} | {op_type:^10} | {start:^10} | {end:^10} | {duration:^10}")
|
| 210 |
-
|
| 211 |
# Find the total execution time (if timing info is available)
|
| 212 |
if all(op.end_time is not None for op in self.ops.values()):
|
| 213 |
total_time = max(op.end_time for op in self.ops.values())
|
|
@@ -215,22 +273,26 @@ class Schedule:
|
|
| 215 |
|
| 216 |
def execute(self):
|
| 217 |
def execute_op(op: Operation):
|
|
|
|
|
|
|
| 218 |
deps = self.get_dependencies(op)
|
| 219 |
if len(deps) == 0:
|
| 220 |
-
op.
|
| 221 |
else:
|
| 222 |
for dep, gap in deps:
|
| 223 |
if dep.end_time is None or dep.start_time is None:
|
| 224 |
execute_op(dep)
|
| 225 |
-
op.
|
| 226 |
-
op.
|
| 227 |
op.op_type, op.stage_id
|
| 228 |
-
)
|
| 229 |
|
| 230 |
-
op_num = len(self.
|
| 231 |
for i in range(op_num):
|
| 232 |
for dev_id in range(self.config.num_devices):
|
| 233 |
-
|
|
|
|
|
|
|
| 234 |
execute_op(op)
|
| 235 |
|
| 236 |
for op in self.ops.values():
|
|
|
|
| 13 |
|
| 14 |
self.start_time = None
|
| 15 |
self.end_time = None
|
| 16 |
+
|
| 17 |
+
def set_end_time(self, end_time: float):
|
| 18 |
+
self.end_time = end_time
|
| 19 |
+
|
| 20 |
+
def set_start_time(self, start_time: float):
|
| 21 |
+
self.start_time = start_time
|
| 22 |
+
|
| 23 |
+
def __repr__(self) -> str:
|
| 24 |
+
return f"Operation(batch_id={self.batch_id}, stage_id={self.stage_id}, op_type={self.op_type})"
|
| 25 |
|
| 26 |
+
class OverlappedOperation:
|
| 27 |
+
"""Represents multiple operations that are overlapped/executed concurrently."""
|
| 28 |
+
|
| 29 |
+
def __init__(self, operations: List[Operation]):
|
| 30 |
+
self.operations = operations
|
| 31 |
+
self.device_id = operations[0].device_id
|
| 32 |
+
|
| 33 |
+
# Validate all operations are on the same device
|
| 34 |
+
for op in operations:
|
| 35 |
+
assert op.device_id == self.device_id, "All operations must be on the same device"
|
| 36 |
+
|
| 37 |
+
# Create a combined op_type (e.g., "overlapped_forward_backward")
|
| 38 |
+
self.op_type = "overlapped_" + "_".join([op.op_type for op in operations])
|
| 39 |
+
|
| 40 |
+
# Use the batch_id and stage_id of the first operation for identification
|
| 41 |
+
# (though we'll track all operations internally)
|
| 42 |
+
self.batch_id = operations[0].batch_id
|
| 43 |
+
self.stage_id = operations[0].stage_id
|
| 44 |
+
|
| 45 |
+
# Initialize timing information
|
| 46 |
+
self.start_time = None
|
| 47 |
+
self.end_time = None
|
| 48 |
+
|
| 49 |
+
def set_end_time(self, end_time: float):
|
| 50 |
+
self.end_time = end_time
|
| 51 |
+
for op in self.operations:
|
| 52 |
+
op.set_end_time(end_time)
|
| 53 |
+
|
| 54 |
+
def set_start_time(self, start_time: float):
|
| 55 |
+
self.start_time = start_time
|
| 56 |
+
for op in self.operations:
|
| 57 |
+
op.set_start_time(start_time)
|
| 58 |
+
|
| 59 |
+
def __repr__(self) -> str:
|
| 60 |
+
op_str = ", ".join([f"({op.batch_id},{op.stage_id},{op.op_type})" for op in self.operations])
|
| 61 |
+
return f"OverlappedOperation([{op_str}])"
|
| 62 |
|
| 63 |
class DeviceQueue:
|
| 64 |
def __init__(self, stages: List[int], device_id: int):
|
|
|
|
| 90 |
self.p2p_latency = p2p_latency
|
| 91 |
self.placement_strategy = placement_strategy
|
| 92 |
self.split_backward = split_backward
|
| 93 |
+
self.overlapped_op_times = {}
|
| 94 |
|
| 95 |
# Initialize default operation times
|
| 96 |
if self.split_backward:
|
|
|
|
| 150 |
raise ValueError(f"Invalid placement strategy: {self.placement_strategy}")
|
| 151 |
|
| 152 |
def get_op_time(self, op_type: str, stage_id: int):
|
| 153 |
+
# For overlapped operations, extract the original operation types
|
| 154 |
+
if op_type.startswith("overlapped_"):
|
| 155 |
+
op_parts = op_type.split("_")[1:]
|
| 156 |
+
if len(op_parts) >= 2:
|
| 157 |
+
op_type1, op_type2 = op_parts[0], op_parts[1]
|
| 158 |
+
# Check if we have a specific time for this combination
|
| 159 |
+
if (op_type1, op_type2) in self.overlapped_op_times:
|
| 160 |
+
return self.overlapped_op_times[(op_type1, op_type2)]
|
| 161 |
+
# Otherwise, use the sum of individual times
|
| 162 |
+
return (self.get_op_time(op_type1, stage_id) +
|
| 163 |
+
self.get_op_time(op_type2, stage_id))
|
| 164 |
+
|
| 165 |
if op_type not in self.op_times:
|
| 166 |
raise ValueError(f"Invalid operation type: {op_type}")
|
|
|
|
| 167 |
times = self.op_times[op_type]
|
| 168 |
if isinstance(times, dict):
|
| 169 |
# If we have stage-specific times, use those
|
|
|
|
| 178 |
class Schedule:
|
| 179 |
def __init__(self, config: ScheduleConfig):
|
| 180 |
self.ops = {} # (batch_id, stage_id, op_type) -> Operation
|
| 181 |
+
self.device_queues: List[DeviceQueue] = []
|
| 182 |
for dev_id in range(config.num_devices):
|
| 183 |
+
self.device_queues.append(DeviceQueue(config.device_to_stages[dev_id], dev_id))
|
| 184 |
self.config = config
|
| 185 |
|
| 186 |
self.init_operations()
|
|
|
|
| 199 |
def get_op(self, batch_id: int, stage_id: int, op_type: str):
|
| 200 |
return self.ops[(batch_id, stage_id, op_type)]
|
| 201 |
|
| 202 |
+
def get_dependencies(self, op: Operation, include_device_dependency=True):
|
| 203 |
deps = []
|
| 204 |
if op.op_type == "forward":
|
| 205 |
if op.stage_id > 0:
|
|
|
|
| 236 |
)
|
| 237 |
)
|
| 238 |
|
| 239 |
+
if include_device_dependency:
|
| 240 |
+
device_index = self.device_queues[op.device_id].ops.index(op)
|
| 241 |
+
if device_index > 0:
|
| 242 |
+
deps.append((self.device_queues[op.device_id].ops[device_index - 1], 0.0))
|
| 243 |
return deps
|
| 244 |
|
| 245 |
def show(self):
|
|
|
|
| 250 |
print("\n=== DEVICE QUEUES ===")
|
| 251 |
|
| 252 |
for dev_id in range(self.config.num_devices):
|
| 253 |
+
print(f"\nDEVICE {dev_id} (Stages: {self.device_queues[dev_id].stages}):")
|
| 254 |
print("-" * 80)
|
| 255 |
print(f"{'Batch':^6} | {'Stage':^6} | {'Type':^10} | {'Start':^10} | {'End':^10} | {'Duration':^10}")
|
| 256 |
print("-" * 80)
|
| 257 |
|
| 258 |
+
for op in self.device_queues[dev_id].ops:
|
| 259 |
op_type = op.op_type
|
| 260 |
start = f"{op.start_time:.2f}" if op.start_time is not None else "N/A"
|
| 261 |
end = f"{op.end_time:.2f}" if op.end_time is not None else "N/A"
|
|
|
|
| 265 |
duration = f"{op.end_time - op.start_time:.2f}"
|
| 266 |
|
| 267 |
print(f"{op.batch_id:^6} | {op.stage_id:^6} | {op_type:^10} | {start:^10} | {end:^10} | {duration:^10}")
|
| 268 |
+
|
| 269 |
# Find the total execution time (if timing info is available)
|
| 270 |
if all(op.end_time is not None for op in self.ops.values()):
|
| 271 |
total_time = max(op.end_time for op in self.ops.values())
|
|
|
|
| 273 |
|
| 274 |
def execute(self):
|
| 275 |
def execute_op(op: Operation):
|
| 276 |
+
if op.end_time is not None:
|
| 277 |
+
return
|
| 278 |
deps = self.get_dependencies(op)
|
| 279 |
if len(deps) == 0:
|
| 280 |
+
op.set_start_time(0.0)
|
| 281 |
else:
|
| 282 |
for dep, gap in deps:
|
| 283 |
if dep.end_time is None or dep.start_time is None:
|
| 284 |
execute_op(dep)
|
| 285 |
+
op.set_start_time(max(dep.end_time + gap for dep, gap in deps))
|
| 286 |
+
op.set_end_time(op.start_time + self.config.get_op_time(
|
| 287 |
op.op_type, op.stage_id
|
| 288 |
+
))
|
| 289 |
|
| 290 |
+
op_num = len(self.device_queues[0].ops)
|
| 291 |
for i in range(op_num):
|
| 292 |
for dev_id in range(self.config.num_devices):
|
| 293 |
+
if len(self.device_queues[dev_id].ops) <= i:
|
| 294 |
+
continue
|
| 295 |
+
op = self.device_queues[dev_id].ops[i]
|
| 296 |
execute_op(op)
|
| 297 |
|
| 298 |
for op in self.ops.values():
|
src/strategies.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
from collections import defaultdict
|
| 2 |
-
from src.execution_model import Schedule, ScheduleConfig
|
| 3 |
|
| 4 |
|
| 5 |
def generate_1f1b_schedule(config: ScheduleConfig):
|
|
@@ -14,23 +14,23 @@ def generate_1f1b_schedule(config: ScheduleConfig):
|
|
| 14 |
steady_batches = config.num_batches - warmup_batches
|
| 15 |
|
| 16 |
for _ in range(warmup_batches):
|
| 17 |
-
schedule.
|
| 18 |
schedule.get_op(fwd_batch_id, i, "forward")
|
| 19 |
)
|
| 20 |
fwd_batch_id += 1
|
| 21 |
|
| 22 |
for _ in range(steady_batches):
|
| 23 |
-
schedule.
|
| 24 |
schedule.get_op(fwd_batch_id, i, "forward")
|
| 25 |
)
|
| 26 |
fwd_batch_id += 1
|
| 27 |
-
schedule.
|
| 28 |
schedule.get_op(bwd_batch_id, i, "backward")
|
| 29 |
)
|
| 30 |
bwd_batch_id += 1
|
| 31 |
|
| 32 |
for _ in range(cooldown_batches):
|
| 33 |
-
schedule.
|
| 34 |
schedule.get_op(bwd_batch_id, i, "backward")
|
| 35 |
)
|
| 36 |
bwd_batch_id += 1
|
|
@@ -53,20 +53,20 @@ def generate_zero_bubble_1p_schedule(config: ScheduleConfig):
|
|
| 53 |
steady_batches = total_batches - warmup_batches
|
| 54 |
|
| 55 |
for _ in range(warmup_batches):
|
| 56 |
-
schedule.
|
| 57 |
schedule.get_op(fwd_batch_id, i, "forward")
|
| 58 |
)
|
| 59 |
fwd_batch_id += 1
|
| 60 |
|
| 61 |
for _ in range(steady_batches):
|
| 62 |
-
schedule.
|
| 63 |
schedule.get_op(fwd_batch_id, i, "forward")
|
| 64 |
)
|
| 65 |
-
schedule.
|
| 66 |
schedule.get_op(bwd_d_batch_id, i, "backward_D")
|
| 67 |
)
|
| 68 |
if fwd_batch_id - bwd_w_batch_id >= config.num_devices - 1:
|
| 69 |
-
schedule.
|
| 70 |
schedule.get_op(bwd_w_batch_id, i, "backward_W")
|
| 71 |
)
|
| 72 |
bwd_w_batch_id += 1
|
|
@@ -74,11 +74,11 @@ def generate_zero_bubble_1p_schedule(config: ScheduleConfig):
|
|
| 74 |
fwd_batch_id += 1
|
| 75 |
|
| 76 |
for _ in range(cooldown_batches):
|
| 77 |
-
schedule.
|
| 78 |
schedule.get_op(bwd_d_batch_id, i, "backward_D")
|
| 79 |
)
|
| 80 |
|
| 81 |
-
schedule.
|
| 82 |
schedule.get_op(bwd_w_batch_id, i, "backward_W")
|
| 83 |
)
|
| 84 |
|
|
@@ -86,7 +86,7 @@ def generate_zero_bubble_1p_schedule(config: ScheduleConfig):
|
|
| 86 |
bwd_d_batch_id += 1
|
| 87 |
|
| 88 |
while bwd_w_batch_id < total_batches:
|
| 89 |
-
schedule.
|
| 90 |
schedule.get_op(bwd_w_batch_id, i, "backward_W")
|
| 91 |
)
|
| 92 |
bwd_w_batch_id += 1
|
|
@@ -106,23 +106,21 @@ def generate_1f1b_overlap_schedule(config: ScheduleConfig):
|
|
| 106 |
steady_batches = config.num_batches - warmup_batches
|
| 107 |
|
| 108 |
for _ in range(warmup_batches):
|
| 109 |
-
schedule.
|
| 110 |
schedule.get_op(fwd_batch_id, i, "forward")
|
| 111 |
)
|
| 112 |
fwd_batch_id += 1
|
| 113 |
|
| 114 |
for _ in range(steady_batches):
|
| 115 |
-
schedule.
|
| 116 |
-
|
| 117 |
-
)
|
|
|
|
| 118 |
fwd_batch_id += 1
|
| 119 |
-
schedule.dev_queues[i].add_operation(
|
| 120 |
-
schedule.get_op(bwd_batch_id, i, "backward")
|
| 121 |
-
)
|
| 122 |
bwd_batch_id += 1
|
| 123 |
|
| 124 |
for _ in range(cooldown_batches):
|
| 125 |
-
schedule.
|
| 126 |
schedule.get_op(bwd_batch_id, i, "backward")
|
| 127 |
)
|
| 128 |
bwd_batch_id += 1
|
|
@@ -264,7 +262,7 @@ def generate_1f1b_interleave_schedule(config: ScheduleConfig):
|
|
| 264 |
cur_stage_microbatch_id[i] = 0
|
| 265 |
cur_stage_microbatch_id[-i] = 0
|
| 266 |
for order_item in order:
|
| 267 |
-
stage_id = schedule.
|
| 268 |
|
| 269 |
if order_item > 0:
|
| 270 |
op_type = "forward"
|
|
@@ -276,7 +274,7 @@ def generate_1f1b_interleave_schedule(config: ScheduleConfig):
|
|
| 276 |
cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1
|
| 277 |
else:
|
| 278 |
raise ValueError(f"Invalid order item: {order_item}")
|
| 279 |
-
schedule.
|
| 280 |
schedule.get_op(micro_batch_id, stage_id, op_type)
|
| 281 |
)
|
| 282 |
return schedule
|
|
|
|
| 1 |
from collections import defaultdict
|
| 2 |
+
from src.execution_model import OverlappedOperation, Schedule, ScheduleConfig
|
| 3 |
|
| 4 |
|
| 5 |
def generate_1f1b_schedule(config: ScheduleConfig):
|
|
|
|
| 14 |
steady_batches = config.num_batches - warmup_batches
|
| 15 |
|
| 16 |
for _ in range(warmup_batches):
|
| 17 |
+
schedule.device_queues[i].add_operation(
|
| 18 |
schedule.get_op(fwd_batch_id, i, "forward")
|
| 19 |
)
|
| 20 |
fwd_batch_id += 1
|
| 21 |
|
| 22 |
for _ in range(steady_batches):
|
| 23 |
+
schedule.device_queues[i].add_operation(
|
| 24 |
schedule.get_op(fwd_batch_id, i, "forward")
|
| 25 |
)
|
| 26 |
fwd_batch_id += 1
|
| 27 |
+
schedule.device_queues[i].add_operation(
|
| 28 |
schedule.get_op(bwd_batch_id, i, "backward")
|
| 29 |
)
|
| 30 |
bwd_batch_id += 1
|
| 31 |
|
| 32 |
for _ in range(cooldown_batches):
|
| 33 |
+
schedule.device_queues[i].add_operation(
|
| 34 |
schedule.get_op(bwd_batch_id, i, "backward")
|
| 35 |
)
|
| 36 |
bwd_batch_id += 1
|
|
|
|
| 53 |
steady_batches = total_batches - warmup_batches
|
| 54 |
|
| 55 |
for _ in range(warmup_batches):
|
| 56 |
+
schedule.device_queues[i].add_operation(
|
| 57 |
schedule.get_op(fwd_batch_id, i, "forward")
|
| 58 |
)
|
| 59 |
fwd_batch_id += 1
|
| 60 |
|
| 61 |
for _ in range(steady_batches):
|
| 62 |
+
schedule.device_queues[i].add_operation(
|
| 63 |
schedule.get_op(fwd_batch_id, i, "forward")
|
| 64 |
)
|
| 65 |
+
schedule.device_queues[i].add_operation(
|
| 66 |
schedule.get_op(bwd_d_batch_id, i, "backward_D")
|
| 67 |
)
|
| 68 |
if fwd_batch_id - bwd_w_batch_id >= config.num_devices - 1:
|
| 69 |
+
schedule.device_queues[i].add_operation(
|
| 70 |
schedule.get_op(bwd_w_batch_id, i, "backward_W")
|
| 71 |
)
|
| 72 |
bwd_w_batch_id += 1
|
|
|
|
| 74 |
fwd_batch_id += 1
|
| 75 |
|
| 76 |
for _ in range(cooldown_batches):
|
| 77 |
+
schedule.device_queues[i].add_operation(
|
| 78 |
schedule.get_op(bwd_d_batch_id, i, "backward_D")
|
| 79 |
)
|
| 80 |
|
| 81 |
+
schedule.device_queues[i].add_operation(
|
| 82 |
schedule.get_op(bwd_w_batch_id, i, "backward_W")
|
| 83 |
)
|
| 84 |
|
|
|
|
| 86 |
bwd_d_batch_id += 1
|
| 87 |
|
| 88 |
while bwd_w_batch_id < total_batches:
|
| 89 |
+
schedule.device_queues[i].add_operation(
|
| 90 |
schedule.get_op(bwd_w_batch_id, i, "backward_W")
|
| 91 |
)
|
| 92 |
bwd_w_batch_id += 1
|
|
|
|
| 106 |
steady_batches = config.num_batches - warmup_batches
|
| 107 |
|
| 108 |
for _ in range(warmup_batches):
|
| 109 |
+
schedule.device_queues[i].add_operation(
|
| 110 |
schedule.get_op(fwd_batch_id, i, "forward")
|
| 111 |
)
|
| 112 |
fwd_batch_id += 1
|
| 113 |
|
| 114 |
for _ in range(steady_batches):
|
| 115 |
+
fwd_op = schedule.get_op(fwd_batch_id, i, "forward")
|
| 116 |
+
bwd_op = schedule.get_op(bwd_batch_id, i, "backward")
|
| 117 |
+
schedule.device_queues[i].add_operation(OverlappedOperation([fwd_op, bwd_op]))
|
| 118 |
+
|
| 119 |
fwd_batch_id += 1
|
|
|
|
|
|
|
|
|
|
| 120 |
bwd_batch_id += 1
|
| 121 |
|
| 122 |
for _ in range(cooldown_batches):
|
| 123 |
+
schedule.device_queues[i].add_operation(
|
| 124 |
schedule.get_op(bwd_batch_id, i, "backward")
|
| 125 |
)
|
| 126 |
bwd_batch_id += 1
|
|
|
|
| 262 |
cur_stage_microbatch_id[i] = 0
|
| 263 |
cur_stage_microbatch_id[-i] = 0
|
| 264 |
for order_item in order:
|
| 265 |
+
stage_id = schedule.device_queues[device_id].stages[abs(order_item)-1]
|
| 266 |
|
| 267 |
if order_item > 0:
|
| 268 |
op_type = "forward"
|
|
|
|
| 274 |
cur_stage_microbatch_id[order_item] = cur_stage_microbatch_id[order_item] + 1
|
| 275 |
else:
|
| 276 |
raise ValueError(f"Invalid order item: {order_item}")
|
| 277 |
+
schedule.device_queues[device_id].add_operation(
|
| 278 |
schedule.get_op(micro_batch_id, stage_id, op_type)
|
| 279 |
)
|
| 280 |
return schedule
|
src/visualizer.py
CHANGED
|
@@ -5,6 +5,8 @@ import plotly.graph_objects as go
|
|
| 5 |
from typing import List, Dict
|
| 6 |
from tqdm import tqdm
|
| 7 |
from functools import lru_cache
|
|
|
|
|
|
|
| 8 |
|
| 9 |
from src.execution_model import Schedule
|
| 10 |
|
|
@@ -26,7 +28,7 @@ def convert_schedule_to_visualization_format(schedule: Schedule):
|
|
| 26 |
visualization_data = {}
|
| 27 |
|
| 28 |
# Organize operations by device
|
| 29 |
-
for device_id, device_queue in enumerate(schedule.
|
| 30 |
visualization_data[device_id] = []
|
| 31 |
|
| 32 |
for op in device_queue.ops:
|
|
@@ -494,6 +496,7 @@ def visualize_pipeline_parallelism_dash(
|
|
| 494 |
debug: bool = False,
|
| 495 |
enable_caching: bool = True,
|
| 496 |
schedule_type="1f1b",
|
|
|
|
| 497 |
):
|
| 498 |
"""
|
| 499 |
Launch a Dash app to visualize the pipeline schedule interactively.
|
|
@@ -504,9 +507,20 @@ def visualize_pipeline_parallelism_dash(
|
|
| 504 |
debug: Whether to run the Dash app in debug mode
|
| 505 |
enable_caching: Whether to cache schedule data and figures
|
| 506 |
schedule_type: Type of schedule ("1f1b", "zb1p", or custom description)
|
|
|
|
| 507 |
"""
|
| 508 |
app = create_dash_app(
|
| 509 |
schedule, schedule_type=schedule_type, enable_caching=enable_caching
|
| 510 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
print(f"Starting Dash app on http://localhost:{port}/")
|
| 512 |
app.run_server(debug=debug, port=port)
|
|
|
|
| 5 |
from typing import List, Dict
|
| 6 |
from tqdm import tqdm
|
| 7 |
from functools import lru_cache
|
| 8 |
+
import webbrowser
|
| 9 |
+
from threading import Timer
|
| 10 |
|
| 11 |
from src.execution_model import Schedule
|
| 12 |
|
|
|
|
| 28 |
visualization_data = {}
|
| 29 |
|
| 30 |
# Organize operations by device
|
| 31 |
+
for device_id, device_queue in enumerate(schedule.device_queues):
|
| 32 |
visualization_data[device_id] = []
|
| 33 |
|
| 34 |
for op in device_queue.ops:
|
|
|
|
| 496 |
debug: bool = False,
|
| 497 |
enable_caching: bool = True,
|
| 498 |
schedule_type="1f1b",
|
| 499 |
+
open_browser: bool = True,
|
| 500 |
):
|
| 501 |
"""
|
| 502 |
Launch a Dash app to visualize the pipeline schedule interactively.
|
|
|
|
| 507 |
debug: Whether to run the Dash app in debug mode
|
| 508 |
enable_caching: Whether to cache schedule data and figures
|
| 509 |
schedule_type: Type of schedule ("1f1b", "zb1p", or custom description)
|
| 510 |
+
open_browser: Whether to automatically open a browser window
|
| 511 |
"""
|
| 512 |
app = create_dash_app(
|
| 513 |
schedule, schedule_type=schedule_type, enable_caching=enable_caching
|
| 514 |
)
|
| 515 |
+
|
| 516 |
+
# Define function to open browser after a short delay
|
| 517 |
+
def open_browser_tab():
|
| 518 |
+
webbrowser.open_new_tab(f"http://localhost:{port}/")
|
| 519 |
+
|
| 520 |
+
# Open browser automatically if requested
|
| 521 |
+
if open_browser:
|
| 522 |
+
# Use a timer to open the browser after the server has started
|
| 523 |
+
Timer(1.0, open_browser_tab).start()
|
| 524 |
+
|
| 525 |
print(f"Starting Dash app on http://localhost:{port}/")
|
| 526 |
app.run_server(debug=debug, port=port)
|