Spaces:
Runtime error
Runtime error
initial commit
Browse files- ShaderEval.py +206 -0
- app.py +7 -0
ShaderEval.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# #TODO: license: MIT pending (evaluation suite itself can be completely open, nothing copyleft from the dataset reaches us here)
|
| 4 |
+
"""TODO: Add a description here."""
|
| 5 |
+
|
| 6 |
+
# TODO: Add BibTeX citation
|
| 7 |
+
_CITATION = """\
|
| 8 |
+
@InProceedings{huggingface:module,
|
| 9 |
+
title = {A great new module},
|
| 10 |
+
authors={huggingface, Inc.},
|
| 11 |
+
year={2020}
|
| 12 |
+
}
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
# TODO: Add description of the module here
|
| 16 |
+
_DESCRIPTION = """\
|
| 17 |
+
This EvaluationSuite currently solves {1} tasks to test code intelligence of genereative language models for "creative programming" (fragment shaders).
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# via https://huggingface.co/docs/evaluate/evaluation_suite
|
| 24 |
+
import evaluate
|
| 25 |
+
from evaluate import evaluator #used by Suite.run()
|
| 26 |
+
from evaluate.evaluator.utils import DatasetColumn # used in .prepare_data()
|
| 27 |
+
from evaluate.evaluation_suite import SubTask
|
| 28 |
+
from datasets import Dataset
|
| 29 |
+
from typing import Any, Callable, Dict, List, Optional, Union # used in .prepare_pipeline()
|
| 30 |
+
import transformers
|
| 31 |
+
from transformers import Pipeline, pipeline
|
| 32 |
+
from datasets import load_dataset #used by Suite.run()
|
| 33 |
+
|
| 34 |
+
# write a custom evaluator, inherent from: https://github.com/huggingface/evaluate/blob/v0.4.0/src/evaluate/evaluator/text_generation.py#L31
|
| 35 |
+
class ReturnGenerationEvaluator(evaluate.TextGenerationEvaluator):
|
| 36 |
+
def __init__(self, task="text-generation", default_metric_name="exact_match", predictions_prefix: str = "generated"):
|
| 37 |
+
super().__init__(task=task, default_metric_name=default_metric_name)
|
| 38 |
+
self.predictions_prefix = predictions_prefix
|
| 39 |
+
PIPELINE_KWARGS = {"return_full_text":False, "do_sample":False} #these kwargs are for the pipeline call, not the pipeline init.
|
| 40 |
+
|
| 41 |
+
# for the pipeline init we need to copy the whole function and add two lines. this still prints errors due to the pad_toke_id = eos_token_id change.
|
| 42 |
+
# from: https://github.com/huggingface/evaluate/blob/v0.4.0/src/evaluate/evaluator/base.py#L375
|
| 43 |
+
def prepare_pipeline(
|
| 44 |
+
self,
|
| 45 |
+
model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821
|
| 46 |
+
tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821
|
| 47 |
+
feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821
|
| 48 |
+
device: int = None,
|
| 49 |
+
):
|
| 50 |
+
"""
|
| 51 |
+
Prepare pipeline.
|
| 52 |
+
Args:
|
| 53 |
+
model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`,
|
| 54 |
+
defaults to `None`):
|
| 55 |
+
If the argument in not specified, we initialize the default pipeline for the task. If the argument is of the type `str` or
|
| 56 |
+
is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the
|
| 57 |
+
argument specifies a pre-initialized pipeline.
|
| 58 |
+
preprocessor (`PreTrainedTokenizerBase` or `FeatureExtractionMixin`, *optional*, defaults to `None`):
|
| 59 |
+
Argument can be used to overwrite a default preprocessor if `model_or_pipeline` represents a model for
|
| 60 |
+
which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore
|
| 61 |
+
this argument.
|
| 62 |
+
Returns:
|
| 63 |
+
The initialized pipeline, with modifications for the specific task of generating text, even with long inputs.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
if device is None:
|
| 67 |
+
device = self._infer_device()
|
| 68 |
+
|
| 69 |
+
if (
|
| 70 |
+
isinstance(model_or_pipeline, str)
|
| 71 |
+
or isinstance(model_or_pipeline, transformers.PreTrainedModel)
|
| 72 |
+
or isinstance(model_or_pipeline, transformers.TFPreTrainedModel)
|
| 73 |
+
):
|
| 74 |
+
pipe = pipeline(
|
| 75 |
+
self.task,
|
| 76 |
+
model=model_or_pipeline,
|
| 77 |
+
tokenizer=tokenizer,
|
| 78 |
+
feature_extractor=feature_extractor,
|
| 79 |
+
device=device,
|
| 80 |
+
# my additions here:
|
| 81 |
+
handle_long_generation= "hole", #our solution? relevant: https://github.com/huggingface/transformers/issues/14033#issuecomment-948385227
|
| 82 |
+
# pad_token_id=tokenizer.eos_token_id, #to avoid the warning, however there might be issues as tokenizers will call this differently.
|
| 83 |
+
do_sample=False, #important to get reproduceable results but we need to make sure the generator is deterministic
|
| 84 |
+
|
| 85 |
+
)
|
| 86 |
+
else:
|
| 87 |
+
if model_or_pipeline is None:
|
| 88 |
+
pipe = pipeline(self.task, device=device)
|
| 89 |
+
else:
|
| 90 |
+
pipe = model_or_pipeline
|
| 91 |
+
# if tokenizer is not None and feature_extractor is not None:
|
| 92 |
+
# logger.warning("Ignoring the value of the preprocessor argument (`tokenizer` or `feature_extractor`).") #excluded warning because I didn't import logger
|
| 93 |
+
if (pipe.task != self.task) and not (self.task == "translation" and pipe.task.startswith("translation")):
|
| 94 |
+
raise ValueError(
|
| 95 |
+
f"Incompatible `model_or_pipeline`. Please specify `model_or_pipeline` compatible with the `{self.task}` task."
|
| 96 |
+
)
|
| 97 |
+
return pipe
|
| 98 |
+
|
| 99 |
+
def _resolve_context_lenght(self, model_or_pipeline=None): #TODO should really copy the typing hints here.
|
| 100 |
+
# tokenizer needs to know the context length for our pipe strategy, but it has to be passed to the tokenizer, not model.
|
| 101 |
+
# the tokenizer should read from the model config, but that can be wrong, or it has a task overwrite (for "text-generation" for example you get 50)
|
| 102 |
+
#model_or_pipeline only exists via the .compute call, so we have to take it in
|
| 103 |
+
# model_or_pipeline.tokenier.config.max_new_tokens = 1024 # we shouldn't return it, but overwrite the tokenizer config, which the pipeline relies on.
|
| 104 |
+
|
| 105 |
+
return 1024 # we shouldn't return it, but overwrite the tokenizer config, which the pipeline relies on.
|
| 106 |
+
|
| 107 |
+
def _estimate_stopping(self, labels, **kwargs):
|
| 108 |
+
""" estimates max_new_tokens for the pipeline call
|
| 109 |
+
by counting the characters in the longest string of the references and multiplying by 2 (for good measure but probably not needed)
|
| 110 |
+
Args:
|
| 111 |
+
labels: A list of dicts by knowing the labels
|
| 112 |
+
Returns:
|
| 113 |
+
`int`: the estimated max_new_tokens, should be smaller than context_lenght in all cases
|
| 114 |
+
"""
|
| 115 |
+
context_lenght = self._resolve_context_lenght(**kwargs)
|
| 116 |
+
estimate = min(max([len(ref) for ref in labels])*2, context_lenght)
|
| 117 |
+
return estimate
|
| 118 |
+
|
| 119 |
+
# this one needs to be adjusted
|
| 120 |
+
def predictions_processor(self, predictions, *args, **kwargs):
|
| 121 |
+
"""
|
| 122 |
+
processes the output of the pipeline to be compatible with the metric.
|
| 123 |
+
generated texts cut off by the first semicolon and whitespaces are stripped (using python str builtins)
|
| 124 |
+
Args:
|
| 125 |
+
predictions: A list of lists of dicts
|
| 126 |
+
Returns:
|
| 127 |
+
`dict`: All the processed text are flattened and stored under the "predictions" key.
|
| 128 |
+
"""
|
| 129 |
+
return {"predictions": [pred[f"{self.predictions_prefix}_text"].split(";")[0].strip() for pred_list in predictions for pred in pred_list]}
|
| 130 |
+
|
| 131 |
+
# straight copy, doesn't seem to give me the
|
| 132 |
+
def prepare_data(self, data: Dataset, input_column: str, label_column: str, *args, **kwargs):
|
| 133 |
+
"""
|
| 134 |
+
Prepare data.
|
| 135 |
+
Args:
|
| 136 |
+
data (`Dataset`): Specifies the dataset we will run evaluation on.
|
| 137 |
+
input_column (`str`, defaults to `"text"`):
|
| 138 |
+
the name of the column containing the text feature in the dataset specified by `data`.
|
| 139 |
+
label_column (`str`, defaults to `"label"`):
|
| 140 |
+
the name of the column containing the labels in the dataset specified by `data`.
|
| 141 |
+
Returns:
|
| 142 |
+
`dict`: metric inputs. everything before the first semicolon and whitespaces are stripped (using python str builtins, just like the pred prep)
|
| 143 |
+
`list`: pipeline inputs.
|
| 144 |
+
"""
|
| 145 |
+
|
| 146 |
+
self.check_required_columns(data, {"input_column": input_column, "label_column": label_column}) #this will throw and exception with useful error messages
|
| 147 |
+
|
| 148 |
+
# don't put everything in the return statement, so you have the control...
|
| 149 |
+
references = [ref.split(";")[0].strip() for ref in data[label_column]]
|
| 150 |
+
self.PIPELINE_KWARGS.update({"max_new_tokens": self._estimate_stopping(references)}) #this is a hack, does it work tho?
|
| 151 |
+
|
| 152 |
+
return {"references": references}, data[input_column] #DatasetColumn(data, input_column) doesn't seem to work. data[input_column] does, but ignores any of the features of the helper class..
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
# via: https://huggingface.co/docs/evaluate/evaluation_suite
|
| 157 |
+
# relevant source: https://github.com/huggingface/evaluate/blob/v0.4.0/src/evaluate/evaluation_suite/__init__.py
|
| 158 |
+
class Suite(evaluate.EvaluationSuite):
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def __init__(self, name):
|
| 162 |
+
super().__init__(name)
|
| 163 |
+
self.preprocessor = lambda x: {"return_statement": x["return_statement"].split(";")[0]} #like this? refactored to RetrunGenerationEvaluator
|
| 164 |
+
self.suite = [
|
| 165 |
+
# more subtasks are only possible once we can pass custom evaluators. -> https://github.com/huggingface/evaluate/pull/367
|
| 166 |
+
SubTask( #this one is adjusted already
|
| 167 |
+
task_type="text-generation", #this call an evaluator, but can you specify your own custom evaluator instead?
|
| 168 |
+
data="Vipitis/Shadertoys-fine",
|
| 169 |
+
subset="return_completion",
|
| 170 |
+
split="test[5:10]", #[5:10] is for testing to make it quick, and they got some easy examples, unless the first 5.
|
| 171 |
+
args_for_task={
|
| 172 |
+
# "metric": "exact_match",
|
| 173 |
+
"input_column": "body",
|
| 174 |
+
"label_column": "return_statement",
|
| 175 |
+
}
|
| 176 |
+
)
|
| 177 |
+
]
|
| 178 |
+
|
| 179 |
+
# from: https://github.com/huggingface/evaluate/blob/v0.4.0/src/evaluate/evaluation_suite/__init__.py#LL103C5-L129C27
|
| 180 |
+
def run(
|
| 181 |
+
self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"] = "Vipitis/CodeGPT-small-java-adaptedGPT2-transfer-shadertoys" # noqa: F821 not so useful default model?
|
| 182 |
+
) -> Dict[str, float]:
|
| 183 |
+
|
| 184 |
+
self.assert_suite_nonempty()
|
| 185 |
+
|
| 186 |
+
results_all = []
|
| 187 |
+
for task in self.suite:
|
| 188 |
+
|
| 189 |
+
task_name = task.data
|
| 190 |
+
|
| 191 |
+
if task.data_preprocessor: # task requires extra preprocessing is all done inside the Evaluator
|
| 192 |
+
ds = load_dataset(task.data, name=task.subset, split=task.split)
|
| 193 |
+
task.data = ds.map(task.data_preprocessor)
|
| 194 |
+
|
| 195 |
+
task_evaluator = ReturnGenerationEvaluator() #this is the change we make: specify our custom evaluator from above.
|
| 196 |
+
args_for_task = task.args_for_task
|
| 197 |
+
args_for_task["model_or_pipeline"] = model_or_pipeline
|
| 198 |
+
args_for_task["data"] = task.data
|
| 199 |
+
args_for_task["subset"] = task.subset
|
| 200 |
+
args_for_task["split"] = task.split
|
| 201 |
+
results = task_evaluator.compute(**args_for_task)
|
| 202 |
+
|
| 203 |
+
results["task_name"] = task_name + "/" + task.subset if task.subset else task_name
|
| 204 |
+
results["data_preprocessor"] = str(task.data_preprocessor) if task.data_preprocessor is not None else None
|
| 205 |
+
results_all.append(results)
|
| 206 |
+
return results_all
|
app.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
def greet(name):
|
| 4 |
+
return "Hello " + name + "!!\n This space hosts the ShaderEval Suite. more to follow soon."
|
| 5 |
+
|
| 6 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
+
iface.launch()
|