Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import math | |
| from typing import List | |
| import torch | |
| from detectron2.solver.lr_scheduler import _get_warmup_factor_at_iter | |
| # NOTE: PyTorch's LR scheduler interface uses names that assume the LR changes | |
| # only on epoch boundaries. We typically use iteration based schedules instead. | |
| # As a result, "epoch" (e.g., as in self.last_epoch) should be understood to mean | |
| # "iteration" instead. | |
| # FIXME: ideally this would be achieved with a CombinedLRScheduler, separating | |
| # MultiStepLR with WarmupLR but the current LRScheduler design doesn't allow it. | |
| class WarmupPolyLR(torch.optim.lr_scheduler._LRScheduler): | |
| """ | |
| Poly learning rate schedule used to train DeepLab. | |
| Paper: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, | |
| Atrous Convolution, and Fully Connected CRFs. | |
| Reference: https://github.com/tensorflow/models/blob/21b73d22f3ed05b650e85ac50849408dd36de32e/research/deeplab/utils/train_utils.py#L337 # noqa | |
| """ | |
| def __init__( | |
| self, | |
| optimizer: torch.optim.Optimizer, | |
| max_iters: int, | |
| warmup_factor: float = 0.001, | |
| warmup_iters: int = 1000, | |
| warmup_method: str = "linear", | |
| last_epoch: int = -1, | |
| power: float = 0.9, | |
| constant_ending: float = 0.0, | |
| ): | |
| self.max_iters = max_iters | |
| self.warmup_factor = warmup_factor | |
| self.warmup_iters = warmup_iters | |
| self.warmup_method = warmup_method | |
| self.power = power | |
| self.constant_ending = constant_ending | |
| super().__init__(optimizer, last_epoch) | |
| def get_lr(self) -> List[float]: | |
| warmup_factor = _get_warmup_factor_at_iter( | |
| self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor | |
| ) | |
| if self.constant_ending > 0 and warmup_factor == 1.0: | |
| # Constant ending lr. | |
| if ( | |
| math.pow((1.0 - self.last_epoch / self.max_iters), self.power) | |
| < self.constant_ending | |
| ): | |
| return [base_lr * self.constant_ending for base_lr in self.base_lrs] | |
| return [ | |
| base_lr * warmup_factor * math.pow((1.0 - self.last_epoch / self.max_iters), self.power) | |
| for base_lr in self.base_lrs | |
| ] | |
| def _compute_values(self) -> List[float]: | |
| # The new interface | |
| return self.get_lr() | |