Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import numpy as np | |
| import unittest | |
| from typing import Dict | |
| import torch | |
| from detectron2.config import instantiate | |
| from detectron2.structures import Boxes, Instances | |
| class TestBaseHungarianTracker(unittest.TestCase): | |
| def setUp(self): | |
| self._img_size = np.array([600, 800]) | |
| self._prev_boxes = np.array( | |
| [ | |
| [101, 101, 200, 200], | |
| [301, 301, 450, 450], | |
| ] | |
| ).astype(np.float32) | |
| self._prev_scores = np.array([0.9, 0.9]) | |
| self._prev_classes = np.array([1, 1]) | |
| self._prev_masks = np.ones((2, 600, 800)).astype("uint8") | |
| self._curr_boxes = np.array( | |
| [ | |
| [302, 303, 451, 452], | |
| [101, 102, 201, 203], | |
| ] | |
| ).astype(np.float32) | |
| self._curr_scores = np.array([0.95, 0.85]) | |
| self._curr_classes = np.array([1, 1]) | |
| self._curr_masks = np.ones((2, 600, 800)).astype("uint8") | |
| self._prev_instances = { | |
| "image_size": self._img_size, | |
| "pred_boxes": self._prev_boxes, | |
| "scores": self._prev_scores, | |
| "pred_classes": self._prev_classes, | |
| "pred_masks": self._prev_masks, | |
| } | |
| self._prev_instances = self._convertDictPredictionToInstance(self._prev_instances) | |
| self._curr_instances = { | |
| "image_size": self._img_size, | |
| "pred_boxes": self._curr_boxes, | |
| "scores": self._curr_scores, | |
| "pred_classes": self._curr_classes, | |
| "pred_masks": self._curr_masks, | |
| } | |
| self._curr_instances = self._convertDictPredictionToInstance(self._curr_instances) | |
| self._max_num_instances = 200 | |
| self._max_lost_frame_count = 0 | |
| self._min_box_rel_dim = 0.02 | |
| self._min_instance_period = 1 | |
| self._track_iou_threshold = 0.5 | |
| def _convertDictPredictionToInstance(self, prediction: Dict) -> Instances: | |
| """ | |
| convert prediction from Dict to D2 Instances format | |
| """ | |
| res = Instances( | |
| image_size=torch.IntTensor(prediction["image_size"]), | |
| pred_boxes=Boxes(torch.FloatTensor(prediction["pred_boxes"])), | |
| pred_masks=torch.IntTensor(prediction["pred_masks"]), | |
| pred_classes=torch.IntTensor(prediction["pred_classes"]), | |
| scores=torch.FloatTensor(prediction["scores"]), | |
| ) | |
| return res | |
| def test_init(self): | |
| cfg = { | |
| "_target_": "detectron2.tracking.hungarian_tracker.BaseHungarianTracker", | |
| "video_height": self._img_size[0], | |
| "video_width": self._img_size[1], | |
| "max_num_instances": self._max_num_instances, | |
| "max_lost_frame_count": self._max_lost_frame_count, | |
| "min_box_rel_dim": self._min_box_rel_dim, | |
| "min_instance_period": self._min_instance_period, | |
| "track_iou_threshold": self._track_iou_threshold, | |
| } | |
| tracker = instantiate(cfg) | |
| self.assertTrue(tracker._video_height == self._img_size[0]) | |
| def test_initialize_extra_fields(self): | |
| cfg = { | |
| "_target_": "detectron2.tracking.hungarian_tracker.BaseHungarianTracker", | |
| "video_height": self._img_size[0], | |
| "video_width": self._img_size[1], | |
| "max_num_instances": self._max_num_instances, | |
| "max_lost_frame_count": self._max_lost_frame_count, | |
| "min_box_rel_dim": self._min_box_rel_dim, | |
| "min_instance_period": self._min_instance_period, | |
| "track_iou_threshold": self._track_iou_threshold, | |
| } | |
| tracker = instantiate(cfg) | |
| instances = tracker._initialize_extra_fields(self._curr_instances) | |
| self.assertTrue(instances.has("ID")) | |
| self.assertTrue(instances.has("ID_period")) | |
| self.assertTrue(instances.has("lost_frame_count")) | |
| if __name__ == "__main__": | |
| unittest.main() | |