Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,74 +1,22 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
-
|
| 5 |
-
tts_title = "Text to Speech Translation"
|
| 6 |
-
tts_examples = ["I love learning machine learning", "How do you do?"]
|
| 7 |
-
tts_demo = gr.Interface.load(
|
| 8 |
-
"huggingface/facebook/fastspeech2-en-ljspeech",
|
| 9 |
-
title=tts_title,
|
| 10 |
-
examples=tts_examples,
|
| 11 |
-
description="Give me something to say!",
|
| 12 |
-
)
|
| 13 |
-
|
| 14 |
-
# Load emotion classification model
|
| 15 |
-
emotion_model_checkpoint = "MuntasirHossain/RoBERTa-base-finetuned-emotion"
|
| 16 |
-
emotion_model = pipeline("text-classification", model=emotion_model_checkpoint)
|
| 17 |
-
|
| 18 |
-
def classify_emotion_and_speech(text=""):
|
| 19 |
-
# Emotion classification
|
| 20 |
-
emotion_label = emotion_model(text)[0]["label"]
|
| 21 |
-
|
| 22 |
-
# Adjust speech synthesis parameters based on emotion_label.
|
| 23 |
-
# Customize this part based on the emotion_label.
|
| 24 |
|
| 25 |
-
|
| 26 |
-
speech_output = f"Emotion: {emotion_label}, Text: {text}"
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
emotion_description = "This AI model classifies texts expressing human emotion and converts them into speech."
|
| 32 |
-
emotion_examples = [["He is very happy today", "Free Palestine"]]
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
"background-color": "#007bff",
|
| 38 |
-
"color": "#fff",
|
| 39 |
-
"padding": "20px",
|
| 40 |
-
},
|
| 41 |
-
"textbox": {
|
| 42 |
-
"background-color": "#fff",
|
| 43 |
-
"border-radius": "5px",
|
| 44 |
-
"padding": "10px",
|
| 45 |
-
"margin-bottom": "10px",
|
| 46 |
-
},
|
| 47 |
-
"button": {
|
| 48 |
-
"background-color": "#007bff",
|
| 49 |
-
"color": "#fff",
|
| 50 |
-
"padding": "10px",
|
| 51 |
-
"border-radius": "5px",
|
| 52 |
-
"cursor": "pointer",
|
| 53 |
-
},
|
| 54 |
-
"label": {
|
| 55 |
-
"color": "#fff",
|
| 56 |
-
},
|
| 57 |
-
}
|
| 58 |
|
| 59 |
-
|
| 60 |
-
fn=classify_emotion_and_speech,
|
| 61 |
-
inputs="textbox",
|
| 62 |
-
outputs=["text", "audio"],
|
| 63 |
-
title=emotion_title,
|
| 64 |
-
theme=theme,
|
| 65 |
-
description=emotion_description,
|
| 66 |
-
examples=emotion_examples,
|
| 67 |
-
)
|
| 68 |
|
| 69 |
-
|
| 70 |
-
combined_demo_tabbed = gr.TabbedInterface([tts_demo, combined_demo], ["Text to Speech", "Texts Expressing Emotion with Speech"])
|
| 71 |
|
| 72 |
if __name__ == "__main__":
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
| 1 |
from transformers import pipeline
|
| 2 |
|
| 3 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
tts = pipeline("text-to-speech", "facebook/wav2vec2-base-960h")
|
|
|
|
| 6 |
|
| 7 |
+
def text_to_speech(text):
|
| 8 |
+
audio = tts(text)[0]["audio"]
|
| 9 |
+
return audio
|
| 10 |
|
| 11 |
+
demo = gr.Blocks()
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
with demo:
|
| 14 |
+
text_input = gr.Textbox()
|
| 15 |
+
audio_output = gr.Audio()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
b1 = gr.Button("Convert to Speech")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
b1.click(text_to_speech, inputs=text_input, outputs=audio_output)
|
|
|
|
| 20 |
|
| 21 |
if __name__ == "__main__":
|
| 22 |
+
demo.launch()
|
|
|