Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import spaces
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 4 |
import torch
|
| 5 |
from threading import Thread
|
|
|
|
| 6 |
|
| 7 |
phi4_model_path = "Intelligent-Internet/II-Medical-8B"
|
| 8 |
|
|
@@ -11,10 +12,12 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
| 11 |
phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
|
| 12 |
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
|
| 13 |
|
|
|
|
| 14 |
@spaces.GPU(duration=60)
|
| 15 |
-
def
|
| 16 |
if not user_message.strip():
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
model = phi4_model
|
| 20 |
tokenizer = phi4_tokenizer
|
|
@@ -60,6 +63,7 @@ Now, analyze the following case:"""
|
|
| 60 |
"streamer": streamer,
|
| 61 |
}
|
| 62 |
|
|
|
|
| 63 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 64 |
thread.start()
|
| 65 |
|
|
@@ -73,10 +77,21 @@ Now, analyze the following case:"""
|
|
| 73 |
assistant_response += cleaned_token
|
| 74 |
# Update the last message in history with the current response
|
| 75 |
new_history[-1][1] = assistant_response.strip()
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
example_messages = {
|
| 82 |
"Headache case": "A 35-year-old female presents with a throbbing headache, nausea, and sensitivity to light. It started on one side of her head and worsens with activity. No prior trauma.",
|
|
@@ -150,23 +165,47 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 150 |
example3 = gr.Button("Abdominal pain")
|
| 151 |
example4 = gr.Button("BMI calculation")
|
| 152 |
|
| 153 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
submit_button.click(
|
| 155 |
-
fn=
|
| 156 |
-
inputs=[user_input, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider,
|
| 157 |
-
|
| 158 |
-
outputs=[chatbot, history]
|
| 159 |
).then(
|
| 160 |
-
fn=
|
| 161 |
-
inputs=
|
| 162 |
-
outputs=
|
| 163 |
)
|
| 164 |
|
| 165 |
-
|
|
|
|
|
|
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
| 171 |
|
| 172 |
demo.launch(ssr_mode=False)
|
|
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 4 |
import torch
|
| 5 |
from threading import Thread
|
| 6 |
+
import time
|
| 7 |
|
| 8 |
phi4_model_path = "Intelligent-Internet/II-Medical-8B"
|
| 9 |
|
|
|
|
| 12 |
phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
|
| 13 |
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
|
| 14 |
|
| 15 |
+
# This is our streaming generator function that yields partial results
|
| 16 |
@spaces.GPU(duration=60)
|
| 17 |
+
def generate_streaming_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history):
|
| 18 |
if not user_message.strip():
|
| 19 |
+
yield history, history
|
| 20 |
+
return
|
| 21 |
|
| 22 |
model = phi4_model
|
| 23 |
tokenizer = phi4_tokenizer
|
|
|
|
| 63 |
"streamer": streamer,
|
| 64 |
}
|
| 65 |
|
| 66 |
+
# Start generation in a separate thread
|
| 67 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 68 |
thread.start()
|
| 69 |
|
|
|
|
| 77 |
assistant_response += cleaned_token
|
| 78 |
# Update the last message in history with the current response
|
| 79 |
new_history[-1][1] = assistant_response.strip()
|
| 80 |
+
yield new_history, new_history
|
| 81 |
+
# Add a small sleep to control the streaming rate
|
| 82 |
+
time.sleep(0.01)
|
| 83 |
+
|
| 84 |
+
# Return the final state after streaming is completed
|
| 85 |
+
yield new_history, new_history
|
| 86 |
+
|
| 87 |
+
# This is our non-streaming wrapper function for buttons that don't support streaming
|
| 88 |
+
def process_input(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history):
|
| 89 |
+
generator = generate_streaming_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history)
|
| 90 |
+
# Get the final result by exhausting the generator
|
| 91 |
+
result = None
|
| 92 |
+
for result in generator:
|
| 93 |
+
pass
|
| 94 |
+
return result
|
| 95 |
|
| 96 |
example_messages = {
|
| 97 |
"Headache case": "A 35-year-old female presents with a throbbing headache, nausea, and sensitivity to light. It started on one side of her head and worsens with activity. No prior trauma.",
|
|
|
|
| 165 |
example3 = gr.Button("Abdominal pain")
|
| 166 |
example4 = gr.Button("BMI calculation")
|
| 167 |
|
| 168 |
+
# Set up the streaming interface
|
| 169 |
+
def on_submit(message, history, max_tokens, temperature, top_k, top_p, repetition_penalty):
|
| 170 |
+
# Return the modified history that includes the new user message
|
| 171 |
+
modified_history = history + [[message, ""]]
|
| 172 |
+
return "", modified_history, modified_history
|
| 173 |
+
|
| 174 |
+
def on_stream(history, max_tokens, temperature, top_k, top_p, repetition_penalty):
|
| 175 |
+
if not history:
|
| 176 |
+
return history
|
| 177 |
+
|
| 178 |
+
# Get the last user message from history
|
| 179 |
+
user_message = history[-1][0]
|
| 180 |
+
|
| 181 |
+
# Start a fresh history without the last entry
|
| 182 |
+
prev_history = history[:-1]
|
| 183 |
+
|
| 184 |
+
# Generate streaming responses
|
| 185 |
+
for new_history, _ in generate_streaming_response(
|
| 186 |
+
user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, prev_history
|
| 187 |
+
):
|
| 188 |
+
yield new_history
|
| 189 |
+
|
| 190 |
+
# Connect the submission event
|
| 191 |
submit_button.click(
|
| 192 |
+
fn=on_submit,
|
| 193 |
+
inputs=[user_input, history, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repetition_penalty_slider],
|
| 194 |
+
outputs=[user_input, chatbot, history]
|
|
|
|
| 195 |
).then(
|
| 196 |
+
fn=on_stream,
|
| 197 |
+
inputs=[history, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repetition_penalty_slider],
|
| 198 |
+
outputs=chatbot
|
| 199 |
)
|
| 200 |
|
| 201 |
+
# Handle examples
|
| 202 |
+
def set_example(example_text):
|
| 203 |
+
return gr.update(value=example_text)
|
| 204 |
|
| 205 |
+
clear_button.click(fn=lambda: ([], []), inputs=None, outputs=[chatbot, history])
|
| 206 |
+
example1.click(fn=lambda: set_example(example_messages["Headache case"]), inputs=None, outputs=user_input)
|
| 207 |
+
example2.click(fn=lambda: set_example(example_messages["Chest pain"]), inputs=None, outputs=user_input)
|
| 208 |
+
example3.click(fn=lambda: set_example(example_messages["Abdominal pain"]), inputs=None, outputs=user_input)
|
| 209 |
+
example4.click(fn=lambda: set_example(example_messages["BMI calculation"]), inputs=None, outputs=user_input)
|
| 210 |
|
| 211 |
demo.launch(ssr_mode=False)
|