Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,319 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import time
|
| 3 |
+
import datetime
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
import numpy as np
|
| 6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
+
import traceback
|
| 8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 9 |
+
import io
|
| 10 |
|
| 11 |
+
# Configuration
|
| 12 |
+
EMBEDDING_MODELS = {
|
| 13 |
+
"sentence-transformers/all-MiniLM-L6-v2": "MiniLM (Multilingual)",
|
| 14 |
+
"ai-forever/FRIDA": "FRIDA (RU-EN)",
|
| 15 |
+
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2": "Multilingual MiniLM",
|
| 16 |
+
"cointegrated/rubert-tiny2": "RuBERT Tiny",
|
| 17 |
+
"ai-forever/sbert_large_nlu_ru": "Russian SBERT Large"
|
| 18 |
+
}
|
| 19 |
|
| 20 |
+
CHUNK_SIZE = 1024
|
| 21 |
+
CHUNK_OVERLAP = 200
|
| 22 |
+
TOP_K_RESULTS = 4
|
| 23 |
+
OUTPUT_FILENAME = "rag_embedding_test_results.txt"
|
| 24 |
+
|
| 25 |
+
# Global storage
|
| 26 |
+
embeddings_cache = {}
|
| 27 |
+
document_chunks = []
|
| 28 |
+
current_document = ""
|
| 29 |
+
|
| 30 |
+
def chunk_document(text):
|
| 31 |
+
"""Split document into chunks using RecursiveCharacterTextSplitter"""
|
| 32 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 33 |
+
chunk_size=CHUNK_SIZE,
|
| 34 |
+
chunk_overlap=CHUNK_OVERLAP,
|
| 35 |
+
length_function=len,
|
| 36 |
+
)
|
| 37 |
+
chunks = text_splitter.split_text(text)
|
| 38 |
+
return [chunk for chunk in chunks if len(chunk.strip()) > 50]
|
| 39 |
+
|
| 40 |
+
def test_single_model(model_name, chunks, question):
|
| 41 |
+
"""Test embedding with a single model"""
|
| 42 |
+
try:
|
| 43 |
+
start_time = time.time()
|
| 44 |
+
|
| 45 |
+
# Load model
|
| 46 |
+
model = SentenceTransformer(model_name)
|
| 47 |
+
load_time = time.time() - start_time
|
| 48 |
+
|
| 49 |
+
# Create embeddings
|
| 50 |
+
embed_start = time.time()
|
| 51 |
+
chunk_embeddings = model.encode(chunks, show_progress_bar=False)
|
| 52 |
+
question_embedding = model.encode([question], show_progress_bar=False)
|
| 53 |
+
embed_time = time.time() - embed_start
|
| 54 |
+
|
| 55 |
+
# Calculate similarities
|
| 56 |
+
similarities = cosine_similarity(question_embedding, chunk_embeddings)[0]
|
| 57 |
+
|
| 58 |
+
# Get top K results
|
| 59 |
+
top_indices = np.argsort(similarities)[-TOP_K_RESULTS:][::-1]
|
| 60 |
+
|
| 61 |
+
total_time = time.time() - start_time
|
| 62 |
+
|
| 63 |
+
results = {
|
| 64 |
+
'status': 'success',
|
| 65 |
+
'total_time': total_time,
|
| 66 |
+
'load_time': load_time,
|
| 67 |
+
'embed_time': embed_time,
|
| 68 |
+
'top_chunks': [
|
| 69 |
+
{
|
| 70 |
+
'index': idx,
|
| 71 |
+
'score': similarities[idx],
|
| 72 |
+
'text': chunks[idx]
|
| 73 |
+
}
|
| 74 |
+
for idx in top_indices
|
| 75 |
+
]
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
return results
|
| 79 |
+
|
| 80 |
+
except Exception as e:
|
| 81 |
+
return {
|
| 82 |
+
'status': 'failed',
|
| 83 |
+
'error': str(e),
|
| 84 |
+
'traceback': traceback.format_exc()
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
def process_embeddings(document_text, progress=gr.Progress()):
|
| 88 |
+
"""Process document with all embedding models"""
|
| 89 |
+
global embeddings_cache, document_chunks, current_document
|
| 90 |
+
|
| 91 |
+
if not document_text.strip():
|
| 92 |
+
return "β Please provide document text first!"
|
| 93 |
+
|
| 94 |
+
current_document = document_text
|
| 95 |
+
|
| 96 |
+
# Chunk document
|
| 97 |
+
progress(0.1, desc="Chunking document...")
|
| 98 |
+
document_chunks = chunk_document(document_text)
|
| 99 |
+
|
| 100 |
+
if not document_chunks:
|
| 101 |
+
return "β No valid chunks created. Please provide longer text."
|
| 102 |
+
|
| 103 |
+
embeddings_cache = {}
|
| 104 |
+
total_models = len(EMBEDDING_MODELS)
|
| 105 |
+
|
| 106 |
+
progress(0.2, desc=f"Processing {len(document_chunks)} chunks with {total_models} models...")
|
| 107 |
+
|
| 108 |
+
# Process each model
|
| 109 |
+
for i, (model_name, display_name) in enumerate(EMBEDDING_MODELS.items()):
|
| 110 |
+
progress(0.2 + (0.7 * i / total_models), desc=f"Testing {display_name}...")
|
| 111 |
+
|
| 112 |
+
# This is just preparation - we'll process on query
|
| 113 |
+
embeddings_cache[model_name] = {
|
| 114 |
+
'processed': False,
|
| 115 |
+
'display_name': display_name
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
progress(1.0, desc="Ready for testing!")
|
| 119 |
+
|
| 120 |
+
return f"β
Document processed successfully!\n\nπ **Stats:**\n- Total chunks: {len(document_chunks)}\n- Chunk size: {CHUNK_SIZE}\n- Chunk overlap: {CHUNK_OVERLAP}\n- Models ready: {len(EMBEDDING_MODELS)}\n\nπ **Now ask a question to compare embedding models!**"
|
| 121 |
+
|
| 122 |
+
def compare_embeddings(question, progress=gr.Progress()):
|
| 123 |
+
"""Compare all models for a given question"""
|
| 124 |
+
global embeddings_cache, document_chunks
|
| 125 |
+
|
| 126 |
+
if not question.strip():
|
| 127 |
+
return "β Please enter a question!", ""
|
| 128 |
+
|
| 129 |
+
if not document_chunks:
|
| 130 |
+
return "β Please process a document first using 'Start Embedding' button!", ""
|
| 131 |
+
|
| 132 |
+
results = {}
|
| 133 |
+
total_models = len(EMBEDDING_MODELS)
|
| 134 |
+
|
| 135 |
+
# Test each model
|
| 136 |
+
for i, (model_name, display_name) in enumerate(EMBEDDING_MODELS.items()):
|
| 137 |
+
progress(i / total_models, desc=f"Testing {display_name}...")
|
| 138 |
+
|
| 139 |
+
result = test_single_model(model_name, document_chunks, question)
|
| 140 |
+
results[model_name] = result
|
| 141 |
+
results[model_name]['display_name'] = display_name
|
| 142 |
+
|
| 143 |
+
progress(1.0, desc="Comparison complete!")
|
| 144 |
+
|
| 145 |
+
# Format results for display
|
| 146 |
+
display_results = format_comparison_results(results, question)
|
| 147 |
+
|
| 148 |
+
# Generate downloadable report
|
| 149 |
+
report_content = generate_report(results, question)
|
| 150 |
+
|
| 151 |
+
return display_results, report_content
|
| 152 |
+
|
| 153 |
+
def format_comparison_results(results, question):
|
| 154 |
+
"""Format results for Gradio display"""
|
| 155 |
+
output = f"# π Embedding Model Comparison\n\n"
|
| 156 |
+
output += f"**Question:** {question}\n\n"
|
| 157 |
+
output += f"**Document chunks:** {len(document_chunks)}\n\n"
|
| 158 |
+
output += "---\n\n"
|
| 159 |
+
|
| 160 |
+
for model_name, result in results.items():
|
| 161 |
+
display_name = result['display_name']
|
| 162 |
+
output += f"## π€ {display_name}\n\n"
|
| 163 |
+
|
| 164 |
+
if result['status'] == 'success':
|
| 165 |
+
output += f"β
**Success** ({result['total_time']:.2f}s)\n\n"
|
| 166 |
+
output += "**Top Results:**\n\n"
|
| 167 |
+
|
| 168 |
+
for i, chunk in enumerate(result['top_chunks'], 1):
|
| 169 |
+
score = chunk['score']
|
| 170 |
+
text_preview = chunk['text'][:200] + "..." if len(chunk['text']) > 200 else chunk['text']
|
| 171 |
+
output += f"**{i}. [{score:.3f}]** Chunk #{chunk['index']}\n"
|
| 172 |
+
output += f"```\n{text_preview}\n```\n\n"
|
| 173 |
+
else:
|
| 174 |
+
output += f"β **Failed:** {result['error']}\n\n"
|
| 175 |
+
|
| 176 |
+
output += "---\n\n"
|
| 177 |
+
|
| 178 |
+
return output
|
| 179 |
+
|
| 180 |
+
def generate_report(results, question):
|
| 181 |
+
"""Generate downloadable text report"""
|
| 182 |
+
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 183 |
+
|
| 184 |
+
report = "==========================================\n"
|
| 185 |
+
report += "RAG EMBEDDING MODEL TEST RESULTS\n"
|
| 186 |
+
report += "==========================================\n"
|
| 187 |
+
report += f"Date: {timestamp}\n"
|
| 188 |
+
report += f"Question: {question}\n"
|
| 189 |
+
report += f"Document chunks: {len(document_chunks)}\n\n"
|
| 190 |
+
|
| 191 |
+
report += "Settings:\n"
|
| 192 |
+
report += f"- Chunk Size: {CHUNK_SIZE}\n"
|
| 193 |
+
report += f"- Chunk Overlap: {CHUNK_OVERLAP}\n"
|
| 194 |
+
report += f"- Splitter: RecursiveCharacterTextSplitter\n"
|
| 195 |
+
report += f"- Top-K Results: {TOP_K_RESULTS}\n\n"
|
| 196 |
+
|
| 197 |
+
report += "==========================================\n"
|
| 198 |
+
|
| 199 |
+
for model_name, result in results.items():
|
| 200 |
+
display_name = result['display_name']
|
| 201 |
+
report += f"MODEL: {display_name}\n"
|
| 202 |
+
|
| 203 |
+
if result['status'] == 'success':
|
| 204 |
+
report += f"Status: β
Success ({result['total_time']:.2f}s)\n"
|
| 205 |
+
report += "Top Results:\n"
|
| 206 |
+
|
| 207 |
+
for chunk in result['top_chunks']:
|
| 208 |
+
score = chunk['score']
|
| 209 |
+
text = chunk['text'].replace('\n', ' ')
|
| 210 |
+
text_preview = text[:100] + "..." if len(text) > 100 else text
|
| 211 |
+
report += f"[{score:.3f}] Chunk #{chunk['index']}: \"{text_preview}\"\n"
|
| 212 |
+
else:
|
| 213 |
+
report += f"Status: β Failed - {result['error']}\n"
|
| 214 |
+
|
| 215 |
+
report += "\n" + "="*40 + "\n"
|
| 216 |
+
|
| 217 |
+
return report
|
| 218 |
+
|
| 219 |
+
def load_file(file):
|
| 220 |
+
"""Load content from uploaded file"""
|
| 221 |
+
if file is None:
|
| 222 |
+
return ""
|
| 223 |
+
|
| 224 |
+
try:
|
| 225 |
+
content = file.read()
|
| 226 |
+
if isinstance(content, bytes):
|
| 227 |
+
content = content.decode('utf-8')
|
| 228 |
+
return content
|
| 229 |
+
except Exception as e:
|
| 230 |
+
return f"Error loading file: {str(e)}"
|
| 231 |
+
|
| 232 |
+
# Create Gradio interface
|
| 233 |
+
with gr.Blocks(title="RAG Embedding Model Tester", theme=gr.themes.Soft()) as demo:
|
| 234 |
+
gr.Markdown("# π§ͺ RAG Embedding Model Tester")
|
| 235 |
+
gr.Markdown("Test and compare different embedding models for RAG pipelines. Focus on relevance quality assessment.")
|
| 236 |
+
|
| 237 |
+
with gr.Row():
|
| 238 |
+
with gr.Column(scale=1):
|
| 239 |
+
gr.Markdown("## π Document Input")
|
| 240 |
+
|
| 241 |
+
document_input = gr.Textbox(
|
| 242 |
+
lines=15,
|
| 243 |
+
placeholder="Paste your document text here (Russian or English)...",
|
| 244 |
+
label="Document Text",
|
| 245 |
+
max_lines=20
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
file_input = gr.File(
|
| 249 |
+
file_types=[".txt", ".md"],
|
| 250 |
+
label="Or Upload Text File"
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# Load file content to text box
|
| 254 |
+
file_input.change(
|
| 255 |
+
fn=load_file,
|
| 256 |
+
inputs=file_input,
|
| 257 |
+
outputs=document_input
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
embed_btn = gr.Button("π Start Embedding Process", variant="primary", size="lg")
|
| 261 |
+
embed_status = gr.Textbox(label="Processing Status", lines=8)
|
| 262 |
+
|
| 263 |
+
with gr.Column(scale=2):
|
| 264 |
+
gr.Markdown("## β Question & Comparison")
|
| 265 |
+
|
| 266 |
+
question_input = gr.Textbox(
|
| 267 |
+
placeholder="What question do you want to ask about the document?",
|
| 268 |
+
label="Your Question",
|
| 269 |
+
lines=2
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
compare_btn = gr.Button("π Compare All Models", variant="secondary", size="lg")
|
| 273 |
+
|
| 274 |
+
results_display = gr.Markdown(label="Comparison Results")
|
| 275 |
+
|
| 276 |
+
gr.Markdown("## π₯ Download Results")
|
| 277 |
+
report_download = gr.File(label="Download Test Report")
|
| 278 |
+
|
| 279 |
+
# Model info
|
| 280 |
+
with gr.Row():
|
| 281 |
+
gr.Markdown(f"""
|
| 282 |
+
## π€ Models to Test:
|
| 283 |
+
{', '.join([f"**{name}**" for name in EMBEDDING_MODELS.values()])}
|
| 284 |
+
|
| 285 |
+
## βοΈ Settings:
|
| 286 |
+
- **Chunk Size:** {CHUNK_SIZE} characters
|
| 287 |
+
- **Chunk Overlap:** {CHUNK_OVERLAP} characters
|
| 288 |
+
- **Top Results:** {TOP_K_RESULTS} chunks per model
|
| 289 |
+
- **Splitter:** RecursiveCharacterTextSplitter
|
| 290 |
+
""")
|
| 291 |
+
|
| 292 |
+
# Event handlers
|
| 293 |
+
embed_btn.click(
|
| 294 |
+
fn=process_embeddings,
|
| 295 |
+
inputs=document_input,
|
| 296 |
+
outputs=embed_status
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
def compare_and_download(question):
|
| 300 |
+
results_text, report_content = compare_embeddings(question)
|
| 301 |
+
|
| 302 |
+
# Create downloadable file
|
| 303 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 304 |
+
filename = f"rag_test_{timestamp}.txt"
|
| 305 |
+
|
| 306 |
+
# Save report to file-like object
|
| 307 |
+
report_file = io.StringIO(report_content)
|
| 308 |
+
report_file.name = filename
|
| 309 |
+
|
| 310 |
+
return results_text, gr.File.update(value=report_file.getvalue(), visible=True)
|
| 311 |
+
|
| 312 |
+
compare_btn.click(
|
| 313 |
+
fn=compare_and_download,
|
| 314 |
+
inputs=question_input,
|
| 315 |
+
outputs=[results_display, report_download]
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
if __name__ == "__main__":
|
| 319 |
+
demo.launch()
|