Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline | |
| from PIL import Image | |
| image_class_pipe = pipeline(task="image-classification", model="google/vit-large-patch16-224") | |
| video_class_pipe = pipeline(task="video-classification", model="nateraw/videomae-base-finetuned-ucf101-subset") | |
| depth_estimator = pipeline(task="depth-estimation", model="Intel/dpt-large") | |
| image_caption = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base") | |
| def classify_image_func(arr): | |
| img = Image.fromarray(arr) | |
| image_result = image_class_pipe(img) | |
| return image_result[0]["label"] | |
| def classify_video_func(vid): | |
| video_result = video_class_pipe(vid) | |
| return video_result | |
| def estimate_depth_func(arr): | |
| img = Image.fromarray(arr) | |
| depth_result = depth_estimator(img) | |
| return depth_result["depth"] | |
| def blip_captioning_func(arr): | |
| img = Image.fromarray(arr) | |
| image_caption_result = image_caption(img, max_new_tokens=500) | |
| return image_caption_result[0]["generated_text"] | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# AI Methods") | |
| with gr.Tab("Media Classification"): | |
| gr.Markdown("# Image Classification") | |
| with gr.Row(): | |
| classify_image_input = gr.Image(width=340, height=340) | |
| with gr.Row(): | |
| classify_image_btn = gr.Button("Classify Image") | |
| classify_image_output = gr.Textbox(label="Result") | |
| classify_image_btn.click(fn=classify_image_func, inputs=[classify_image_input], outputs=[classify_image_output]) | |
| gr.Markdown("# Video Classification") | |
| with gr.Row(): | |
| classify_video_input = gr.Video(width=340, height=340) | |
| with gr.Row(): | |
| classify_video_btn = gr.Button("Classify Video") | |
| classify_video_output = gr.Textbox(label="Result") | |
| classify_video_btn.click(fn=classify_video_func, inputs=[classify_video_input], outputs=[classify_video_output]) | |
| with gr.Tab("Depth"): | |
| gr.Markdown("# Depth Estimation") | |
| with gr.Row(): | |
| depth_estimation_input = gr.Image(width=260, height=260) | |
| with gr.Row(): | |
| depth_estimation_btn = gr.Button("Estimate Depth") | |
| with gr.Row(): | |
| depth_estimation_output = gr.Image() | |
| depth_estimation_btn.click(fn=estimate_depth_func, inputs=[depth_estimation_input], outputs=[depth_estimation_output]) | |
| with gr.Tab("BLIP Captioning"): | |
| gr.Markdown("# BLIP Captioning") | |
| with gr.Row(): | |
| blip_input = gr.Image(width=260, height=260) | |
| with gr.Row(): | |
| blip_btn = gr.Button("BLIP Caption") | |
| blip_output = gr.Textbox(label="Caption") | |
| blip_btn.click(fn=blip_captioning_func, inputs=[blip_input], outputs=[blip_output]) | |
| demo.launch(debug=True) |