Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| from snac import SNAC | |
| import torch | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from huggingface_hub import snapshot_download | |
| # Check if CUDA is available | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print("Loading SNAC model...") | |
| snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz") | |
| snac_model = snac_model.to(device) | |
| # Available models - LFM2 models | |
| MODELS = { | |
| "Jenny": "Vyvo/VyvoTTS-LFM2-350M-Jenny", | |
| "Optimus Prime": "Vyvo/VyvoTTS-LFM2-Optimus-Prime", | |
| "Itto": "Vyvo/VyvoTTS-LFM2-Itto", | |
| "Stephen_Fry": "Vyvo/VyvoTTS-LFM2-Stephen_Fry", | |
| "Alhaitham": "Vyvo/VyvoTTS-LFM2-Alhaitham", | |
| "Cyno": "Vyvo/VyvoTTS-LFM2-Cyno", | |
| "Dehya": "Vyvo/VyvoTTS-LFM2-Dehya", | |
| "Kaeya": "Vyvo/VyvoTTS-LFM2-Kaeya", | |
| "Kaveh": "Vyvo/VyvoTTS-LFM2-Kaveh", | |
| "Neuvillette": "Vyvo/VyvoTTS-LFM2-Neuvillette", | |
| "Ningguang": "Vyvo/VyvoTTS-LFM2-Ningguang", | |
| "Heizou": "Vyvo/VyvoTTS-LFM2-Heizou", | |
| "Thoma": "Vyvo/VyvoTTS-LFM2-Thoma", | |
| "Tighnari": "Vyvo/VyvoTTS-LFM2-Tighnari", | |
| } | |
| # Pre-load all models | |
| print("Loading models...") | |
| models = {} | |
| tokenizers = {} | |
| for lang, model_name in MODELS.items(): | |
| print(f"Loading {lang} model: {model_name}") | |
| models[lang] = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) | |
| models[lang].to(device) | |
| tokenizers[lang] = AutoTokenizer.from_pretrained(model_name) | |
| print("All models loaded successfully!") | |
| # LFM2 Special Tokens Configuration | |
| TOKENIZER_LENGTH = 64400 | |
| START_OF_TEXT = 1 | |
| END_OF_TEXT = 7 | |
| START_OF_SPEECH = TOKENIZER_LENGTH + 1 | |
| END_OF_SPEECH = TOKENIZER_LENGTH + 2 | |
| START_OF_HUMAN = TOKENIZER_LENGTH + 3 | |
| END_OF_HUMAN = TOKENIZER_LENGTH + 4 | |
| START_OF_AI = TOKENIZER_LENGTH + 5 | |
| END_OF_AI = TOKENIZER_LENGTH + 6 | |
| PAD_TOKEN = TOKENIZER_LENGTH + 7 | |
| AUDIO_TOKENS_START = TOKENIZER_LENGTH + 10 | |
| # Process text prompt for LFM2 | |
| def process_prompt(prompt, tokenizer, device): | |
| input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
| start_token = torch.tensor([[START_OF_HUMAN]], dtype=torch.int64) | |
| end_tokens = torch.tensor([[END_OF_TEXT, END_OF_HUMAN]], dtype=torch.int64) | |
| modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) | |
| # No padding needed for single input | |
| attention_mask = torch.ones_like(modified_input_ids) | |
| return modified_input_ids.to(device), attention_mask.to(device) | |
| # Parse output tokens to audio for LFM2 | |
| def parse_output(generated_ids): | |
| token_to_find = START_OF_SPEECH | |
| token_to_remove = END_OF_SPEECH | |
| token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True) | |
| if len(token_indices[1]) > 0: | |
| last_occurrence_idx = token_indices[1][-1].item() | |
| cropped_tensor = generated_ids[:, last_occurrence_idx+1:] | |
| else: | |
| cropped_tensor = generated_ids | |
| processed_rows = [] | |
| for row in cropped_tensor: | |
| masked_row = row[row != token_to_remove] | |
| processed_rows.append(masked_row) | |
| code_lists = [] | |
| for row in processed_rows: | |
| row_length = row.size(0) | |
| new_length = (row_length // 7) * 7 | |
| trimmed_row = row[:new_length] | |
| trimmed_row = [t - AUDIO_TOKENS_START for t in trimmed_row] | |
| code_lists.append(trimmed_row) | |
| return code_lists[0] # Return just the first one for single sample | |
| # Redistribute codes for audio generation | |
| def redistribute_codes(code_list, snac_model): | |
| device = next(snac_model.parameters()).device # Get the device of SNAC model | |
| layer_1 = [] | |
| layer_2 = [] | |
| layer_3 = [] | |
| for i in range((len(code_list)+1)//7): | |
| layer_1.append(code_list[7*i]) | |
| layer_2.append(code_list[7*i+1]-4096) | |
| layer_3.append(code_list[7*i+2]-(2*4096)) | |
| layer_3.append(code_list[7*i+3]-(3*4096)) | |
| layer_2.append(code_list[7*i+4]-(4*4096)) | |
| layer_3.append(code_list[7*i+5]-(5*4096)) | |
| layer_3.append(code_list[7*i+6]-(6*4096)) | |
| # Move tensors to the same device as the SNAC model | |
| codes = [ | |
| torch.tensor(layer_1, device=device).unsqueeze(0), | |
| torch.tensor(layer_2, device=device).unsqueeze(0), | |
| torch.tensor(layer_3, device=device).unsqueeze(0) | |
| ] | |
| audio_hat = snac_model.decode(codes) | |
| return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array | |
| # Main generation function | |
| def generate_speech(text, model_choice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()): | |
| if not text.strip(): | |
| return None | |
| try: | |
| progress(0.1, "π Processing text...") | |
| model = models[model_choice] | |
| tokenizer = tokenizers[model_choice] | |
| # Voice parameter is always None for LFM2 models | |
| input_ids, attention_mask = process_prompt(text, tokenizer, device) | |
| progress(0.3, "π΅ Generating speech tokens...") | |
| with torch.no_grad(): | |
| generated_ids = model.generate( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| num_return_sequences=1, | |
| eos_token_id=END_OF_SPEECH, | |
| ) | |
| progress(0.6, "π§ Processing speech tokens...") | |
| code_list = parse_output(generated_ids) | |
| progress(0.8, "π§ Converting to audio...") | |
| audio_samples = redistribute_codes(code_list, snac_model) | |
| progress(1.0, "β Completed!") | |
| return (24000, audio_samples) | |
| except Exception as e: | |
| print(f"Error generating speech: {e}") | |
| return None | |
| # Example texts | |
| EXAMPLE_TEXTS = [ | |
| "Hello! I am a speech system. I can read your text with a natural voice.", | |
| "Today is a beautiful day. The weather is perfect for a walk.", | |
| "The sun rises from the east and sets in the west. This is a rule of nature.", | |
| "Technology makes our lives easier every day." | |
| ] | |
| # Create modern Gradio interface using built-in theme | |
| with gr.Blocks(title="π΅ Modern Text-to-Speech", theme=gr.themes.Soft(), css=""" | |
| .gradio-textbox textarea { background-color: #6b7280 !important; color: white !important; } | |
| .gradio-audio { background-color: #6b7280 !important; } | |
| """) as demo: | |
| # Header section | |
| gr.Markdown(""" | |
| # π΅ VyvoTTS | |
| ### π [Github](https://github.com/Vyvo-Labs/VyvoTTS) | π€ [HF Model](https://huggingface.co/collections/Vyvo/lfm2-tts-689eedae5353ff5b048efd55) | |
| """) | |
| gr.Markdown(""" | |
| VyvoTTS is a text-to-speech model by Vyvo team using LFM2 architecture, trained on multiple diverse open-source datasets. | |
| Since some datasets may contain transcription errors or quality issues, output quality can vary. | |
| Higher quality datasets typically produce better speech synthesis results. | |
| **Roadmap:** | |
| - [ ] Transformers.js support | |
| - [ ] Pretrained model release | |
| - [ ] vLLM support | |
| - [x] Training and inference code release | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| # Text input section | |
| text_input = gr.Textbox( | |
| label="π Text Input", | |
| placeholder="Enter the text you want to convert to speech...", | |
| lines=6, | |
| max_lines=10 | |
| ) | |
| # Voice model selection (hidden since only Jenny is available) | |
| model_choice = gr.Radio( | |
| choices=list(MODELS.keys()), | |
| value="Jenny Voice", | |
| label="π€ Voice Model", | |
| visible=True # Hide since only one option | |
| ) | |
| # Advanced settings | |
| with gr.Accordion("βοΈ Advanced Settings", open=False): | |
| temperature = gr.Slider( | |
| minimum=0.1, maximum=1.5, value=0.6, step=0.05, | |
| label="π‘οΈ Temperature", | |
| info="Higher values create more expressive but less stable speech" | |
| ) | |
| top_p = gr.Slider( | |
| minimum=0.1, maximum=1.0, value=0.95, step=0.05, | |
| label="π― Top P", | |
| info="Nucleus sampling threshold value" | |
| ) | |
| repetition_penalty = gr.Slider( | |
| minimum=1.0, maximum=2.0, value=1.1, step=0.05, | |
| label="π Repetition Penalty", | |
| info="Higher values discourage repetitive patterns" | |
| ) | |
| max_new_tokens = gr.Slider( | |
| minimum=100, maximum=2000, value=1200, step=100, | |
| label="π Maximum Length", | |
| info="Maximum length of generated audio (in tokens)" | |
| ) | |
| # Action buttons | |
| with gr.Row(): | |
| submit_btn = gr.Button("π΅ Generate Speech", variant="primary", size="lg") | |
| clear_btn = gr.Button("ποΈ Clear", size="lg") | |
| with gr.Column(scale=1): | |
| # Output section | |
| audio_output = gr.Audio( | |
| label="π§ Generated Audio", | |
| type="numpy", | |
| interactive=False | |
| ) | |
| # Example texts at the bottom | |
| with gr.Row(): | |
| example_1_btn = gr.Button( | |
| EXAMPLE_TEXTS[0], | |
| size="sm", | |
| elem_classes="example-button" | |
| ) | |
| example_2_btn = gr.Button( | |
| EXAMPLE_TEXTS[1], | |
| size="sm", | |
| elem_classes="example-button" | |
| ) | |
| with gr.Row(): | |
| example_3_btn = gr.Button( | |
| EXAMPLE_TEXTS[2], | |
| size="sm", | |
| elem_classes="example-button" | |
| ) | |
| example_4_btn = gr.Button( | |
| EXAMPLE_TEXTS[3], | |
| size="sm", | |
| elem_classes="example-button" | |
| ) | |
| # Set up example button events | |
| example_1_btn.click(fn=lambda: EXAMPLE_TEXTS[0], outputs=text_input) | |
| example_2_btn.click(fn=lambda: EXAMPLE_TEXTS[1], outputs=text_input) | |
| example_3_btn.click(fn=lambda: EXAMPLE_TEXTS[2], outputs=text_input) | |
| example_4_btn.click(fn=lambda: EXAMPLE_TEXTS[3], outputs=text_input) | |
| # Set up event handlers | |
| submit_btn.click( | |
| fn=generate_speech, | |
| inputs=[text_input, model_choice, temperature, top_p, repetition_penalty, max_new_tokens], | |
| outputs=audio_output, | |
| show_progress=True | |
| ) | |
| def clear_interface(): | |
| return "", None | |
| clear_btn.click( | |
| fn=clear_interface, | |
| inputs=[], | |
| outputs=[text_input, audio_output] | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| demo.queue().launch(share=False, ssr_mode=False) |