File size: 11,008 Bytes
81ca11c e1897e2 bf6fbd5 e1897e2 bf6fbd5 5ab166b e1897e2 5ab166b bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 a21ea5d e1897e2 d1310ca bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 5ab166b e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 d1310ca e1897e2 d1310ca e1897e2 bf6fbd5 e1897e2 8f87442 bf6fbd5 e1897e2 c6358db e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 d1310ca e1897e2 8f87442 bf6fbd5 e1897e2 bf6fbd5 d1310ca e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 bf6fbd5 e1897e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
from __future__ import annotations
import os
import copy
import uuid
import logging
from typing import List, Optional, Tuple, Dict
# Reduce progress/log spam before heavy imports
os.environ.setdefault("TQDM_DISABLE", "1")
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
import numpy as np
import torch
import torchaudio
import soundfile as sf
import gradio as gr
# NeMo
from nemo.collections.asr.models import ASRModel
from omegaconf import OmegaConf
from nemo.utils import logging as nemo_logging
# ----------------------------
# Config
# ----------------------------
MODEL_NAME = os.environ.get("PARAKEET_MODEL", "nvidia/parakeet-tdt-0.6b-v3")
TARGET_SR = 16_000
BEAM_SIZE = int(os.environ.get("PARAKEET_BEAM_SIZE", "16")) # Increased for quality
OFFLINE_BATCH= int(os.environ.get("PARAKEET_BATCH", "8"))
CHUNK_S = float(os.environ.get("PARAKEET_CHUNK_S", "2.0")) # Increased for better context
FLUSH_PAD_S = float(os.environ.get("PARAKEET_FLUSH_PAD_S", "2.0")) # Increased for better finalization
# ----------------------------
# Logging (unified)
# ----------------------------
LOG_LEVEL = os.environ.get("LOG_LEVEL", "INFO").upper()
logger = logging.getLogger("parakeet_app")
logger.setLevel(getattr(logging, LOG_LEVEL, logging.INFO))
_handler = logging.StreamHandler()
_handler.setFormatter(logging.Formatter("%(asctime)s %(levelname)s %(name)s: %(message)s"))
logger.handlers = [_handler]
logger.propagate = False
# Quiet NeMo logs
nemo_logging.setLevel(logging.ERROR)
logging.getLogger("nemo").setLevel(logging.ERROR)
logging.getLogger("nemo.collections.asr").setLevel(logging.ERROR)
torch.set_grad_enabled(False)
# ----------------------------
# Audio utils
# ----------------------------
def to_mono_np(x: np.ndarray) -> np.ndarray:
if x.ndim == 2:
x = x.mean(axis=1)
return x.astype(np.float32, copy=False)
class ResamplerCache:
def __init__(self):
self._cache: Dict[int, torchaudio.transforms.Resample] = {}
def resample(self, wav: np.ndarray, src_sr: int) -> np.ndarray:
if src_sr == TARGET_SR:
return wav
if src_sr not in self._cache:
logger.debug(f"create_resampler src_sr={src_sr} -> {TARGET_SR}")
self._cache[src_sr] = torchaudio.transforms.Resample(orig_freq=src_sr, new_freq=TARGET_SR)
t = torch.from_numpy(wav)
if t.ndim == 1:
t = t.unsqueeze(0)
y = self._cache[src_sr](t)
return y.squeeze(0).numpy()
RESAMPLER = ResamplerCache()
def load_mono16k(path: str) -> np.ndarray:
"""Load any audio file, convert to mono float32 at 16 kHz."""
try:
wav, sr = sf.read(path, dtype="float32", always_2d=True) # (T,C)
wav = wav.mean(axis=1).astype(np.float32, copy=False)
return RESAMPLER.resample(wav, sr)
except Exception:
wav_t, sr = torchaudio.load(path) # (C,T)
if wav_t.dtype != torch.float32:
wav_t = wav_t.float()
wav = wav_t.mean(dim=0).numpy()
return RESAMPLER.resample(wav, int(sr))
# ----------------------------
# Model manager (MALSD batched beam everywhere, loop_labels=True)
# ----------------------------
class ParakeetManager:
def __init__(self, device: str = "cpu"):
self.device = torch.device(device)
logger.info(f"loading_model name={MODEL_NAME} device={self.device}")
self.model: ASRModel = ASRModel.from_pretrained(model_name=MODEL_NAME)
self.model.to(self.device)
self.model.eval()
for p in self.model.parameters():
p.requires_grad = False
# Base decoding cfg differs by class
if hasattr(self.model, "decoder") and hasattr(self.model.decoder, "decoder"):
self._base_decoding = copy.deepcopy(self.model.decoder.decoder.cfg)
else:
self._base_decoding = copy.deepcopy(self.model.cfg.decoding)
self._set_malsd_beam()
logger.info(f"model_loaded strategy=malsd_batch beam_size={BEAM_SIZE}")
def _set_malsd_beam(self):
cfg = copy.deepcopy(self._base_decoding)
cfg.strategy = "malsd_batch"
cfg.beam = OmegaConf.create({
"beam_size": BEAM_SIZE,
"return_best_hypothesis": True,
"score_norm": True,
"allow_cuda_graphs": False, # CPU-only
"max_symbols_per_step": 10, # Added for stability in MALSD
})
OmegaConf.set_struct(cfg, False)
cfg["loop_labels"] = True
cfg["fused_batch_size"] = -1 # Added for CPU compatibility
cfg["compute_timestamps"] = False # Added to match legacy, avoid overhead
if hasattr(cfg, "greedy"):
cfg.greedy.use_cuda_graph_decoder = False
self.model.change_decoding_strategy(cfg)
logger.info("decoding_set strategy=malsd_batch loop_labels=True")
def _transcribe(self, items: List, *, partial=None):
with torch.inference_mode():
return self.model.transcribe(
items,
batch_size=1 if len(items) == 1 else OFFLINE_BATCH,
num_workers=0,
return_hypotheses=True,
partial_hypothesis=partial,
)
# Offline batch
def transcribe_files(self, paths: List[str]):
n = 0 if not paths else len(paths)
logger.info(f"files_run start count={n} batch={OFFLINE_BATCH}")
if not paths:
return []
arrays = [load_mono16k(p) for p in paths]
out = self._transcribe(arrays, partial=None)
results = []
for p, o in zip(paths, out):
h = o[0] if isinstance(o, list) and o else o
text = h if isinstance(h, str) else getattr(h, "text", "")
results.append({"path": p, "text": text})
logger.info("files_run ok")
return results
# Streaming step (rolling hypothesis)
def stream_step(self, audio_16k: np.ndarray, prev_hyp) -> object:
out = self._transcribe([audio_16k], partial=[prev_hyp] if prev_hyp is not None else None)
h = out[0][0] if isinstance(out[0], list) else out[0]
return h # Hypothesis
# ----------------------------
# Streaming session (no overlap, rolling hypothesis)
# ----------------------------
class StreamingSession:
def __init__(self, manager: ParakeetManager, chunk_s: float, flush_pad_s: float):
self.mgr = manager
self.chunk_s = chunk_s
self.flush_pad_s = flush_pad_s
self.hyp = None
self.pending = np.zeros(0, dtype=np.float32)
self.text = ""
logger.info(f"mic_reset chunk={self.chunk_s}s flush_pad={self.flush_pad_s}s")
def add_audio(self, audio: np.ndarray, src_sr: int):
mono = to_mono_np(audio)
res = RESAMPLER.resample(mono, src_sr)
self.pending = np.concatenate([self.pending, res]) if self.pending.size else res
self._drain()
def _drain(self):
C = int(self.chunk_s * TARGET_SR)
while self.pending.size >= C:
chunk = self.pending[:C]
self.pending = self.pending[C:]
try:
self.hyp = self.mgr.stream_step(chunk, self.hyp)
self.text = getattr(self.hyp, "text", self.text)
except Exception:
logger.exception("mic_step failed")
break
def flush(self) -> str:
if self.pending.size:
pad = np.zeros(int(self.flush_pad_s * TARGET_SR), dtype=np.float32)
final = np.concatenate([self.pending, pad])
try:
self.hyp = self.mgr.stream_step(final, self.hyp)
self.text = getattr(self.hyp, "text", self.text)
except Exception:
logger.exception("mic_flush failed")
self.pending = np.zeros(0, dtype=np.float32)
return self.text
# ----------------------------
# Simple session registry (avoid deepcopy in gr.State)
# ----------------------------
SESS: Dict[str, StreamingSession] = {}
def _new_session_id() -> str:
return uuid.uuid4().hex
# ----------------------------
# Gradio callbacks
# ----------------------------
MANAGER = ParakeetManager(device="cpu")
def _parse_gr_audio(x) -> Tuple[np.ndarray, int]:
if x is None:
return np.zeros(0, dtype=np.float32), TARGET_SR
if isinstance(x, tuple) and len(x) == 2:
sr = int(x[0]); arr = np.array(x[1], dtype=np.float32); return arr, sr
if isinstance(x, dict) and "data" in x and "sampling_rate" in x:
arr = np.array(x["data"], dtype=np.float32); sr = int(x["sampling_rate"]); return arr, sr
if isinstance(x, np.ndarray):
return x.astype(np.float32, copy=False), TARGET_SR
logger.error(f"unsupported_gr_audio_payload type={type(x)}"); raise ValueError("Unsupported audio payload")
def mic_step(audio_chunk, sess_id: Optional[str]):
if not sess_id or sess_id not in SESS:
sess_id = _new_session_id()
SESS[sess_id] = StreamingSession(MANAGER, CHUNK_S, FLUSH_PAD_S)
sess = SESS[sess_id]
try:
wav, sr = _parse_gr_audio(audio_chunk)
except Exception:
logger.exception("mic_parse failed")
return sess_id, sess.text
if wav.size:
sess.add_audio(wav, sr)
return sess_id, sess.text
def mic_flush(sess_id: Optional[str]):
if not sess_id or sess_id not in SESS:
return None, ""
text = SESS[sess_id].flush()
logger.info("mic_flush ok")
return None, text
def files_run(files):
n = 0 if not files else len(files)
logger.info(f"files_ui start count={n}")
if not files:
return []
paths: List[str] = []
for f in files:
if isinstance(f, str):
paths.append(f)
elif hasattr(f, "name"):
paths.append(f.name)
try:
results = MANAGER.transcribe_files(paths)
except Exception:
logger.exception("files_run failed"); raise
table = [[os.path.basename(r["path"]), r["text"]] for r in results]
logger.info("files_ui ok")
return table
# ----------------------------
# UI
# ----------------------------
with gr.Blocks(title="Parakeet-TDT v3 (Unified MALSD Beam)") as demo:
with gr.Tab("Mic"):
mic = gr.Audio(sources=["microphone"], type="numpy", streaming=True, label="Speak")
text_out = gr.Textbox(label="Transcript", lines=8)
flush_btn = gr.Button("Flush")
state_id = gr.State() # only a string id
mic.stream(mic_step, inputs=[mic, state_id], outputs=[state_id, text_out])
flush_btn.click(mic_flush, inputs=[state_id], outputs=[state_id, text_out])
with gr.Tab("Files"):
files = gr.File(file_count="multiple", type="filepath", label="Upload audio files")
run_btn = gr.Button("Run")
results_table = gr.Dataframe(headers=["file", "text"], label="Results",
row_count=(0, "dynamic"), col_count=(2, "fixed"))
run_btn.click(files_run, inputs=[files], outputs=[results_table])
demo.queue().launch(ssr_mode=False) |