Spaces:
Runtime error
Runtime error
Make the dataset selector more visible
Browse files
app.py
CHANGED
|
@@ -132,9 +132,6 @@ def generate_dataset_info(datasets):
|
|
| 132 |
msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id}) *(recommended)*\n"
|
| 133 |
else:
|
| 134 |
msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id})\n"
|
| 135 |
-
msg += """
|
| 136 |
-
Choose the dataset that is most relevant to your task and select it from the dropdown below.
|
| 137 |
-
"""
|
| 138 |
|
| 139 |
msg = "\n".join([line.strip() for line in msg.split("\n")])
|
| 140 |
return msg
|
|
@@ -162,9 +159,6 @@ lang_df = dataframe[dataframe.lang == lang]
|
|
| 162 |
|
| 163 |
sorted_datasets = sort_datasets(lang_df["dataset"].unique())
|
| 164 |
|
| 165 |
-
text = generate_dataset_info(sorted_datasets)
|
| 166 |
-
st.sidebar.markdown(text)
|
| 167 |
-
|
| 168 |
lang_name = lang2name[lang] if lang in lang2name else ""
|
| 169 |
num_models = len(lang_df["model_id"].unique())
|
| 170 |
num_datasets = len(lang_df["dataset"].unique())
|
|
@@ -174,6 +168,10 @@ trained on `{num_datasets}` dataset(s) available for `automatic-speech-recogniti
|
|
| 174 |
"""
|
| 175 |
st.markdown(text)
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
dataset = st.sidebar.selectbox(
|
| 178 |
"Dataset",
|
| 179 |
sorted_datasets,
|
|
@@ -181,6 +179,9 @@ dataset = st.sidebar.selectbox(
|
|
| 181 |
)
|
| 182 |
dataset_df = lang_df[lang_df.dataset == dataset]
|
| 183 |
|
|
|
|
|
|
|
|
|
|
| 184 |
# sort by WER or CER depending on the language
|
| 185 |
metric_col = "cer" if lang in cer_langs else "wer"
|
| 186 |
if dataset_df["config"].nunique() > 1:
|
|
|
|
| 132 |
msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id}) *(recommended)*\n"
|
| 133 |
else:
|
| 134 |
msg += f"* [{dataset_id}](https://hf.co/datasets/{dataset_id})\n"
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
msg = "\n".join([line.strip() for line in msg.split("\n")])
|
| 137 |
return msg
|
|
|
|
| 159 |
|
| 160 |
sorted_datasets = sort_datasets(lang_df["dataset"].unique())
|
| 161 |
|
|
|
|
|
|
|
|
|
|
| 162 |
lang_name = lang2name[lang] if lang in lang2name else ""
|
| 163 |
num_models = len(lang_df["model_id"].unique())
|
| 164 |
num_datasets = len(lang_df["dataset"].unique())
|
|
|
|
| 168 |
"""
|
| 169 |
st.markdown(text)
|
| 170 |
|
| 171 |
+
st.sidebar.markdown("""
|
| 172 |
+
Choose the dataset that is most relevant to your task and select it from the dropdown below:
|
| 173 |
+
""")
|
| 174 |
+
|
| 175 |
dataset = st.sidebar.selectbox(
|
| 176 |
"Dataset",
|
| 177 |
sorted_datasets,
|
|
|
|
| 179 |
)
|
| 180 |
dataset_df = lang_df[lang_df.dataset == dataset]
|
| 181 |
|
| 182 |
+
text = generate_dataset_info(sorted_datasets)
|
| 183 |
+
st.sidebar.markdown(text)
|
| 184 |
+
|
| 185 |
# sort by WER or CER depending on the language
|
| 186 |
metric_col = "cer" if lang in cer_langs else "wer"
|
| 187 |
if dataset_df["config"].nunique() > 1:
|