Spaces:
Running
Running
Update N.TXT
Browse files
N.TXT
CHANGED
|
@@ -296,4 +296,431 @@ def update_db(db_name):
|
|
| 296 |
if __name__ == "__main__":
|
| 297 |
app.run(debug=False, use_reloader=False)
|
| 298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
|
|
|
| 296 |
if __name__ == "__main__":
|
| 297 |
app.run(debug=False, use_reloader=False)
|
| 298 |
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
RETRIVAL PY
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
from langchain_community.document_loaders import DirectoryLoader
|
| 305 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 306 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 307 |
+
from langchain.schema import Document
|
| 308 |
+
from langchain_core.documents import Document
|
| 309 |
+
from langchain_community.vectorstores import Chroma
|
| 310 |
+
import os
|
| 311 |
+
import shutil
|
| 312 |
+
import asyncio
|
| 313 |
+
from unstructured.partition.pdf import partition_pdf
|
| 314 |
+
from unstructured.partition.auto import partition
|
| 315 |
+
import pytesseract
|
| 316 |
+
import os
|
| 317 |
+
import re
|
| 318 |
+
import uuid
|
| 319 |
+
from collections import defaultdict
|
| 320 |
+
|
| 321 |
+
pytesseract.pytesseract.tesseract_cmd = (r'/usr/bin/tesseract')
|
| 322 |
+
|
| 323 |
+
# Configurations
|
| 324 |
+
UPLOAD_FOLDER = "./uploads"
|
| 325 |
+
VECTOR_DB_FOLDER = "./VectorDB"
|
| 326 |
+
IMAGE_DB_FOLDER = "./Images"
|
| 327 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 328 |
+
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
|
| 329 |
+
|
| 330 |
+
########################################################################################################################################################
|
| 331 |
+
####-------------------------------------------------------------- Documnet Loader ---------------------------------------------------------------####
|
| 332 |
+
########################################################################################################################################################
|
| 333 |
+
# Loaders for loading Document text, tables and images from any file format.
|
| 334 |
+
#data_path=r"H:\DEV PATEL\2025\RAG Project\test_data\google data"
|
| 335 |
+
def load_document(data_path):
|
| 336 |
+
processed_documents = []
|
| 337 |
+
element_content = []
|
| 338 |
+
table_document = []
|
| 339 |
+
#having different process for the pdf
|
| 340 |
+
for root, _, files in os.walk(data_path):
|
| 341 |
+
for file in files:
|
| 342 |
+
file_path = os.path.join(root, file)
|
| 343 |
+
doc_id = str(uuid.uuid4()) # Generate a unique ID for the document
|
| 344 |
+
|
| 345 |
+
print(f"Processing document ID: {doc_id}, Path: {file_path}")
|
| 346 |
+
|
| 347 |
+
try:
|
| 348 |
+
# Determine the file type based on extension
|
| 349 |
+
filename, file_extension = os.path.splitext(file.lower())
|
| 350 |
+
image_output = f"./Images/{filename}/"
|
| 351 |
+
# Use specific partition techniques based on file extension
|
| 352 |
+
if file_extension == ".pdf":
|
| 353 |
+
elements = partition_pdf(
|
| 354 |
+
filename=file_path,
|
| 355 |
+
strategy="hi_res", # Use layout detection
|
| 356 |
+
infer_table_structure=True,
|
| 357 |
+
hi_res_model_name="yolox",
|
| 358 |
+
extract_images_in_pdf=True,
|
| 359 |
+
extract_image_block_types=["Image","Table"],
|
| 360 |
+
extract_image_block_output_dir=image_output,
|
| 361 |
+
show_progress=True,
|
| 362 |
+
#chunking_strategy="by_title",
|
| 363 |
+
)
|
| 364 |
+
else:
|
| 365 |
+
# Default to auto partition if no specific handler is found
|
| 366 |
+
elements = partition(
|
| 367 |
+
filename=file_path,
|
| 368 |
+
strategy="hi_res",
|
| 369 |
+
infer_table_structure=True,
|
| 370 |
+
show_progress=True,
|
| 371 |
+
#chunking_strategy="by_title"
|
| 372 |
+
)
|
| 373 |
+
except Exception as e:
|
| 374 |
+
print(f"Failed to process document {file_path}: {e}")
|
| 375 |
+
continue
|
| 376 |
+
categorized_content = {
|
| 377 |
+
"tables": {"content": [], "Metadata": []},
|
| 378 |
+
"images": {"content": [], "Metadata": []},
|
| 379 |
+
"text": {"content": [], "Metadata": []},
|
| 380 |
+
"text2": {"content": [], "Metadata": []}
|
| 381 |
+
}
|
| 382 |
+
element_content.append(elements)
|
| 383 |
+
CNT=1
|
| 384 |
+
for chunk in elements:
|
| 385 |
+
# Safely extract metadata and text
|
| 386 |
+
chunk_type = str(type(chunk))
|
| 387 |
+
chunk_metadata = chunk.metadata.to_dict() if chunk.metadata else {}
|
| 388 |
+
chunk_text = getattr(chunk, "text", None)
|
| 389 |
+
|
| 390 |
+
# Separate content into categories
|
| 391 |
+
#if "Table" in chunk_type:
|
| 392 |
+
if any(
|
| 393 |
+
keyword in chunk_type
|
| 394 |
+
for keyword in [
|
| 395 |
+
"Table",
|
| 396 |
+
"TableChunk"]):
|
| 397 |
+
categorized_content["tables"]["content"].append(chunk_text)
|
| 398 |
+
categorized_content["tables"]["Metadata"].append(chunk_metadata)
|
| 399 |
+
|
| 400 |
+
#test1
|
| 401 |
+
TABLE_DATA=f"Table number {CNT} "+chunk_metadata.get("text_as_html", "")+" "
|
| 402 |
+
CNT+=1
|
| 403 |
+
categorized_content["text"]["content"].append(TABLE_DATA)
|
| 404 |
+
categorized_content["text"]["Metadata"].append(chunk_metadata)
|
| 405 |
+
|
| 406 |
+
elif "Image" in chunk_type:
|
| 407 |
+
categorized_content["images"]["content"].append(chunk_text)
|
| 408 |
+
categorized_content["images"]["Metadata"].append(chunk_metadata)
|
| 409 |
+
elif any(
|
| 410 |
+
keyword in chunk_type
|
| 411 |
+
for keyword in [
|
| 412 |
+
"CompositeElement",
|
| 413 |
+
"Text",
|
| 414 |
+
"NarrativeText",
|
| 415 |
+
"Title",
|
| 416 |
+
"Header",
|
| 417 |
+
"Footer",
|
| 418 |
+
"FigureCaption",
|
| 419 |
+
"ListItem",
|
| 420 |
+
"UncategorizedText",
|
| 421 |
+
"Formula",
|
| 422 |
+
"CodeSnippet",
|
| 423 |
+
"Address",
|
| 424 |
+
"EmailAddress",
|
| 425 |
+
"PageBreak",
|
| 426 |
+
]
|
| 427 |
+
):
|
| 428 |
+
categorized_content["text"]["content"].append(chunk_text)
|
| 429 |
+
categorized_content["text"]["Metadata"].append(chunk_metadata)
|
| 430 |
+
|
| 431 |
+
else:
|
| 432 |
+
continue
|
| 433 |
+
# Append processed document
|
| 434 |
+
processed_documents.append({
|
| 435 |
+
"doc_id": doc_id,
|
| 436 |
+
"source": file_path,
|
| 437 |
+
**categorized_content,
|
| 438 |
+
})
|
| 439 |
+
|
| 440 |
+
# Loop over tables and match text from the same document and page
|
| 441 |
+
|
| 442 |
+
'''
|
| 443 |
+
for doc in processed_documents:
|
| 444 |
+
cnt=1 # count for storing number of the table
|
| 445 |
+
for table_metadata in doc.get("tables", {}).get("Metadata", []):
|
| 446 |
+
page_number = table_metadata.get("page_number")
|
| 447 |
+
source = doc.get("source")
|
| 448 |
+
page_content = ""
|
| 449 |
+
|
| 450 |
+
for text_metadata, text_content in zip(
|
| 451 |
+
doc.get("text", {}).get("Metadata", []),
|
| 452 |
+
doc.get("text", {}).get("content", [])
|
| 453 |
+
):
|
| 454 |
+
page_number2 = text_metadata.get("page_number")
|
| 455 |
+
source2 = doc.get("source")
|
| 456 |
+
|
| 457 |
+
if source == source2 and page_number == page_number2:
|
| 458 |
+
print(f"Matching text found for source: {source}, page: {page_number}")
|
| 459 |
+
page_content += f"{text_content} " # Concatenate text with a space
|
| 460 |
+
|
| 461 |
+
# Add the matched content to the table metadata
|
| 462 |
+
table_metadata["page_content"] =f"Table number {cnt} "+table_metadata.get("text_as_html", "")+" "+page_content.strip() # Remove trailing spaces and have the content proper here
|
| 463 |
+
table_metadata["text_as_html"] = table_metadata.get("text_as_html", "") # we are also storing it seperatly
|
| 464 |
+
table_metadata["Table_number"] = cnt # addiing the table number it will be use in retrival
|
| 465 |
+
cnt+=1
|
| 466 |
+
|
| 467 |
+
# Custom loader of document which will store the table along with the text on that page specifically
|
| 468 |
+
# making document of each table with its content
|
| 469 |
+
unique_id = str(uuid.uuid4())
|
| 470 |
+
table_document.append(
|
| 471 |
+
Document(
|
| 472 |
+
|
| 473 |
+
id =unique_id, # Add doc_id directly
|
| 474 |
+
page_content=table_metadata.get("page_content", ""), # Get page_content from metadata, default to empty string if missing
|
| 475 |
+
metadata={
|
| 476 |
+
"source": doc["source"],
|
| 477 |
+
"text_as_html": table_metadata.get("text_as_html", ""),
|
| 478 |
+
"filetype": table_metadata.get("filetype", ""),
|
| 479 |
+
"page_number": str(table_metadata.get("page_number", 0)), # Default to 0 if missing
|
| 480 |
+
"image_path": table_metadata.get("image_path", ""),
|
| 481 |
+
"file_directory": table_metadata.get("file_directory", ""),
|
| 482 |
+
"filename": table_metadata.get("filename", ""),
|
| 483 |
+
"Table_number": str(table_metadata.get("Table_number", 0)) # Default to 0 if missing
|
| 484 |
+
}
|
| 485 |
+
)
|
| 486 |
+
)
|
| 487 |
+
'''
|
| 488 |
+
|
| 489 |
+
# Initialize a structure to group content by doc_id
|
| 490 |
+
grouped_by_doc_id = defaultdict(lambda: {
|
| 491 |
+
"text_content": [],
|
| 492 |
+
"metadata": None, # Metadata will only be set once per doc_id
|
| 493 |
+
})
|
| 494 |
+
|
| 495 |
+
for doc in processed_documents:
|
| 496 |
+
doc_id = doc.get("doc_id")
|
| 497 |
+
source = doc.get("source")
|
| 498 |
+
text_content = doc.get("text", {}).get("content", [])
|
| 499 |
+
metadata_list = doc.get("text", {}).get("Metadata", [])
|
| 500 |
+
|
| 501 |
+
# Merge text content
|
| 502 |
+
grouped_by_doc_id[doc_id]["text_content"].extend(text_content)
|
| 503 |
+
|
| 504 |
+
# Set metadata (if not already set)
|
| 505 |
+
if grouped_by_doc_id[doc_id]["metadata"] is None and metadata_list:
|
| 506 |
+
metadata = metadata_list[0] # Assuming metadata is consistent
|
| 507 |
+
grouped_by_doc_id[doc_id]["metadata"] = {
|
| 508 |
+
"source": source,
|
| 509 |
+
"filetype": metadata.get("filetype"),
|
| 510 |
+
"file_directory": metadata.get("file_directory"),
|
| 511 |
+
"filename": metadata.get("filename"),
|
| 512 |
+
"languages": str(metadata.get("languages")),
|
| 513 |
+
}
|
| 514 |
+
|
| 515 |
+
# Convert grouped content into Document objects
|
| 516 |
+
grouped_documents = []
|
| 517 |
+
for doc_id, data in grouped_by_doc_id.items():
|
| 518 |
+
grouped_documents.append(
|
| 519 |
+
Document(
|
| 520 |
+
id=doc_id,
|
| 521 |
+
page_content=" ".join(data["text_content"]).strip(),
|
| 522 |
+
metadata=data["metadata"],
|
| 523 |
+
)
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
# Output the grouped documents
|
| 527 |
+
for document in grouped_documents:
|
| 528 |
+
print(document)
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
#Dirctory loader for loading the text data only to specific db
|
| 532 |
+
'''
|
| 533 |
+
loader = DirectoryLoader(data_path, glob="*.*")
|
| 534 |
+
documents = loader.load()
|
| 535 |
+
|
| 536 |
+
# update the metadata adding filname to the met
|
| 537 |
+
for doc in documents:
|
| 538 |
+
unique_id = str(uuid.uuid4())
|
| 539 |
+
doc.id = unique_id
|
| 540 |
+
path=doc.metadata.get("source")
|
| 541 |
+
match = re.search(r'([^\\]+\.[^\\]+)$', path)
|
| 542 |
+
doc.metadata.update({"filename":match.group(1)})
|
| 543 |
+
return documents,
|
| 544 |
+
'''
|
| 545 |
+
return grouped_documents
|
| 546 |
+
#documents,processed_documents,table_document = load_document(data_path)
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
########################################################################################################################################################
|
| 550 |
+
####-------------------------------------------------------------- Chunking the Text --------------------------------------------------------------####
|
| 551 |
+
########################################################################################################################################################
|
| 552 |
+
|
| 553 |
+
def split_text(documents: list[Document]):
|
| 554 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 555 |
+
chunk_size=1000,
|
| 556 |
+
chunk_overlap=500,
|
| 557 |
+
length_function=len,
|
| 558 |
+
add_start_index=True,
|
| 559 |
+
)
|
| 560 |
+
chunks = text_splitter.split_documents(documents) # splitting the document into chunks
|
| 561 |
+
for index in chunks:
|
| 562 |
+
index.metadata["start_index"]=str(index.metadata["start_index"]) # the converstion of int metadata to str was done to store it in sqlite3
|
| 563 |
+
print(f"Split {len(documents)} documents into {len(chunks)} chunks.")
|
| 564 |
+
return chunks
|
| 565 |
+
|
| 566 |
+
########################################################################################################################################################
|
| 567 |
+
####---------------------------------------------------- Creating and Storeing Data in Vector DB --------------------------------------------------####
|
| 568 |
+
########################################################################################################################################################
|
| 569 |
+
|
| 570 |
+
#def save_to_chroma(chunks: list[Document], name: str, tables: list[Document]):
|
| 571 |
+
def save_to_chroma(chunks: list[Document], name: str):
|
| 572 |
+
CHROMA_PATH = f"./VectorDB/chroma_{name}"
|
| 573 |
+
#TABLE_PATH = f"./TableDB/chroma_{name}"
|
| 574 |
+
if os.path.exists(CHROMA_PATH):
|
| 575 |
+
shutil.rmtree(CHROMA_PATH)
|
| 576 |
+
# if os.path.exists(TABLE_PATH):
|
| 577 |
+
# shutil.rmtree(TABLE_PATH)
|
| 578 |
+
|
| 579 |
+
try:
|
| 580 |
+
# Load the embedding model
|
| 581 |
+
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 582 |
+
#embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 583 |
+
# Create Chroma DB for documents using from_documents [NOTE: Some of the data is converted to string because int and float show null if added]
|
| 584 |
+
print("Creating document vector database...")
|
| 585 |
+
db = Chroma.from_documents(
|
| 586 |
+
documents=chunks,
|
| 587 |
+
embedding=embedding_function,
|
| 588 |
+
persist_directory=CHROMA_PATH,
|
| 589 |
+
)
|
| 590 |
+
print("Document database successfully saved.")
|
| 591 |
+
|
| 592 |
+
# # Create Chroma DB for tables if available [NOTE: Some of the data is converted to string because int and float show null if added]
|
| 593 |
+
# if tables:
|
| 594 |
+
# print("Creating table vector database...")
|
| 595 |
+
# tdb = Chroma.from_documents(
|
| 596 |
+
# documents=tables,
|
| 597 |
+
# embedding=embedding_function,
|
| 598 |
+
# persist_directory=TABLE_PATH,
|
| 599 |
+
# )
|
| 600 |
+
# print("Table database successfully saved.")
|
| 601 |
+
# else:
|
| 602 |
+
# tdb = None
|
| 603 |
+
|
| 604 |
+
#return db, tdb
|
| 605 |
+
return db
|
| 606 |
+
|
| 607 |
+
except Exception as e:
|
| 608 |
+
print("Error while saving to Chroma:", e)
|
| 609 |
+
return None
|
| 610 |
+
|
| 611 |
+
# def get_unique_sources(chroma_path):
|
| 612 |
+
# db = Chroma(persist_directory=chroma_path)
|
| 613 |
+
# metadata_list = db.get()["metadatas"]
|
| 614 |
+
# unique_sources = {metadata["source"] for metadata in metadata_list if "source" in metadata}
|
| 615 |
+
# return list(unique_sources)
|
| 616 |
+
|
| 617 |
+
########################################################################################################################################################
|
| 618 |
+
####----------------------------------------------------------- Updating Existing Data in Vector DB -----------------------------------------------####
|
| 619 |
+
########################################################################################################################################################
|
| 620 |
+
|
| 621 |
+
# def add_document_to_existing_db(new_documents: list[Document], db_name: str):
|
| 622 |
+
# CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
| 623 |
+
|
| 624 |
+
# if not os.path.exists(CHROMA_PATH):
|
| 625 |
+
# print(f"Database '{db_name}' does not exist. Please create it first.")
|
| 626 |
+
# return
|
| 627 |
+
|
| 628 |
+
# try:
|
| 629 |
+
# embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 630 |
+
# #embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 631 |
+
# db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
| 632 |
+
|
| 633 |
+
# print("Adding new documents to the existing database...")
|
| 634 |
+
# chunks = split_text(new_documents)
|
| 635 |
+
# db.add_documents(chunks)
|
| 636 |
+
# db.persist()
|
| 637 |
+
# print("New documents added and database updated successfully.")
|
| 638 |
+
# except Exception as e:
|
| 639 |
+
# print("Error while adding documents to existing database:", e)
|
| 640 |
+
|
| 641 |
+
# def delete_chunks_by_source(chroma_path, source_to_delete):
|
| 642 |
+
# if not os.path.exists(chroma_path):
|
| 643 |
+
# print(f"Database at path '{chroma_path}' does not exist.")
|
| 644 |
+
# return
|
| 645 |
+
|
| 646 |
+
# try:
|
| 647 |
+
# #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 648 |
+
# embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 649 |
+
# db = Chroma(persist_directory=chroma_path, embedding_function=embedding_function)
|
| 650 |
+
|
| 651 |
+
# print(f"Retrieving all metadata to identify chunks with source '{source_to_delete}'...")
|
| 652 |
+
# metadata_list = db.get()["metadatas"]
|
| 653 |
+
|
| 654 |
+
# # Identify indices of chunks to delete
|
| 655 |
+
# indices_to_delete = [
|
| 656 |
+
# idx for idx, metadata in enumerate(metadata_list) if metadata.get("source") == source_to_delete
|
| 657 |
+
# ]
|
| 658 |
+
|
| 659 |
+
# if not indices_to_delete:
|
| 660 |
+
# print(f"No chunks found with source '{source_to_delete}'.")
|
| 661 |
+
# return
|
| 662 |
+
|
| 663 |
+
# print(f"Deleting {len(indices_to_delete)} chunks with source '{source_to_delete}'...")
|
| 664 |
+
# db.delete(indices=indices_to_delete)
|
| 665 |
+
# db.persist()
|
| 666 |
+
# print("Chunks deleted and database updated successfully.")
|
| 667 |
+
# except Exception as e:
|
| 668 |
+
# print(f"Error while deleting chunks by source: {e}")
|
| 669 |
+
|
| 670 |
+
# # update a data store
|
| 671 |
+
# def update_data_store(file_path, db_name):
|
| 672 |
+
# CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
| 673 |
+
# print(f"Filepath ===> {file_path} DB Name ====> {db_name}")
|
| 674 |
+
|
| 675 |
+
# try:
|
| 676 |
+
# documents,table_document = load_document(file_path)
|
| 677 |
+
# print("Documents loaded successfully.")
|
| 678 |
+
# except Exception as e:
|
| 679 |
+
# print(f"Error loading documents: {e}")
|
| 680 |
+
# return
|
| 681 |
+
|
| 682 |
+
# try:
|
| 683 |
+
# chunks = split_text(documents)
|
| 684 |
+
# print(f"Text split into {len(chunks)} chunks.")
|
| 685 |
+
# except Exception as e:
|
| 686 |
+
# print(f"Error splitting text: {e}")
|
| 687 |
+
# return
|
| 688 |
+
|
| 689 |
+
# try:
|
| 690 |
+
# asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document)))
|
| 691 |
+
# print(f"Data saved to Chroma for database {db_name}.")
|
| 692 |
+
# except Exception as e:
|
| 693 |
+
# print(f"Error saving to Chroma: {e}")
|
| 694 |
+
# return
|
| 695 |
+
|
| 696 |
+
########################################################################################################################################################
|
| 697 |
+
####------------------------------------------------------- Combine Process of Load, Chunk and Store ----------------------------------------------####
|
| 698 |
+
########################################################################################################################################################
|
| 699 |
+
|
| 700 |
+
def generate_data_store(file_path, db_name):
|
| 701 |
+
CHROMA_PATH = f"./VectorDB/chroma_{db_name}"
|
| 702 |
+
print(f"Filepath ===> {file_path} DB Name ====> {db_name}")
|
| 703 |
+
|
| 704 |
+
try:
|
| 705 |
+
#documents,grouped_documents = load_document(file_path)
|
| 706 |
+
grouped_documents = load_document(file_path)
|
| 707 |
+
print("Documents loaded successfully.")
|
| 708 |
+
except Exception as e:
|
| 709 |
+
print(f"Error loading documents: {e}")
|
| 710 |
+
return
|
| 711 |
+
|
| 712 |
+
try:
|
| 713 |
+
chunks = split_text(grouped_documents)
|
| 714 |
+
print(f"Text split into {len(chunks)} chunks.")
|
| 715 |
+
except Exception as e:
|
| 716 |
+
print(f"Error splitting text: {e}")
|
| 717 |
+
return
|
| 718 |
+
|
| 719 |
+
try:
|
| 720 |
+
#asyncio.run(save_to_chroma(save_to_chroma(chunks, db_name, table_document)))
|
| 721 |
+
asyncio.run(save_to_chroma(chunks, db_name))
|
| 722 |
+
print(f"Data saved to Chroma for database {db_name}.")
|
| 723 |
+
except Exception as e:
|
| 724 |
+
print(f"Error saving to Chroma: {e}")
|
| 725 |
+
return
|
| 726 |
|