Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
from peft import PeftModel
|
| 3 |
+
import gc
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torch
|
| 6 |
+
from huggingface_hub import snapshot_download, HfApi, notebook_login, create_repo, whoami, login
|
| 7 |
+
|
| 8 |
+
api = HfApi()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def info_fn(text):
|
| 12 |
+
gr.Info(text)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def warning_fn(text):
|
| 16 |
+
gr.Warning(text)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def upload(hf_token, base_model_name_or_path, peft_model_path, output_dir):
|
| 20 |
+
try:
|
| 21 |
+
login(hf_token)
|
| 22 |
+
repo_name = output_dir
|
| 23 |
+
|
| 24 |
+
device_arg = {'device_map': "cpu"}
|
| 25 |
+
|
| 26 |
+
info_fn(f"Loading base model: {base_model_name_or_path}")
|
| 27 |
+
|
| 28 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name_or_path, torch_dtype=torch.float16, **device_arg)
|
| 29 |
+
|
| 30 |
+
info_fn(f"Loading PEFT: {peft_model_path}")
|
| 31 |
+
|
| 32 |
+
model = PeftModel.from_pretrained(base_model, peft_model_path, **device_arg)
|
| 33 |
+
|
| 34 |
+
info_fn(f"Running merge_and_unload")
|
| 35 |
+
|
| 36 |
+
model = model.merge_and_unload()
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path)
|
| 38 |
+
|
| 39 |
+
info_fn("Saving model..")
|
| 40 |
+
model.save_pretrained(output_dir, safe_serialization=True)
|
| 41 |
+
|
| 42 |
+
info_fn("Saving tokenizer...")
|
| 43 |
+
tokenizer.save_pretrained(output_dir)
|
| 44 |
+
|
| 45 |
+
info_fn(f"Model saved to {output_dir}")
|
| 46 |
+
|
| 47 |
+
del model
|
| 48 |
+
gc.collect()
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
info_fn("Creating Repo...")
|
| 52 |
+
info_fn(api.create_repo(repo_id=repo_name).__dict__['url'])
|
| 53 |
+
except Exception as e:
|
| 54 |
+
warning_fn(f"Model already exists: {e}")
|
| 55 |
+
|
| 56 |
+
info_fn("Uploading to hub...")
|
| 57 |
+
uploading = api.upload_folder(
|
| 58 |
+
folder_path=output_dir,
|
| 59 |
+
repo_id=output_dir,
|
| 60 |
+
repo_type="model")
|
| 61 |
+
|
| 62 |
+
return uploading
|
| 63 |
+
|
| 64 |
+
except Exception as e:
|
| 65 |
+
gc.collect()
|
| 66 |
+
gr.Error(e)
|
| 67 |
+
|
| 68 |
+
return e
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
INTRODUCTION_TEXT = f"""
|
| 72 |
+
🎯 The Leaderboard allows you to merge your Lora adapters.
|
| 73 |
+
|
| 74 |
+
## ❓ What is Lora?
|
| 75 |
+
|
| 76 |
+
LoRA: Low-Rank Adaptation of Large Language Models allows you to train LLM's with a low cost. Lora freezes the pre-trained model weights and injects trainable rank decomposition matrices into each layer of the Transformer architecture, greatly reducing the number of trainable parameters for downstream tasks.
|
| 77 |
+
You can learn more about LoRa here:
|
| 78 |
+
|
| 79 |
+
[📝 LoRA: Low-Rank Adaptation of Large Language Models Arxiv](https://arxiv.org/abs/2106.09685)
|
| 80 |
+
|
| 81 |
+
## 🛠️ How does this space work?
|
| 82 |
+
|
| 83 |
+
🛠️ The leaderboard's backend mainly runs the transformers and PEFT library.
|
| 84 |
+
|
| 85 |
+
🤖 The code first loads your original model and then your adapter models.
|
| 86 |
+
|
| 87 |
+
📚 The code merges your adapter weights using the `merge_and_unload` function from the PEFT library.
|
| 88 |
+
|
| 89 |
+
📤 The code saves your resulting model temporarily and then pushes the resulting model to the hub.
|
| 90 |
+
|
| 91 |
+
## 🧮 Required RAM
|
| 92 |
+
|
| 93 |
+
This space is loading the model to RAM without performing any quantization, so the required RAM is high.
|
| 94 |
+
|
| 95 |
+
You can merge models up to 13B. (If your adapter weights are too large, it might not work.)
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
with gr.Blocks() as demo:
|
| 100 |
+
gr.Markdown("""<h1 align="center" id="space-title">🚀 Lora Merge</h1>""")
|
| 101 |
+
gr.Markdown(INTRODUCTION_TEXT)
|
| 102 |
+
|
| 103 |
+
with gr.Row():
|
| 104 |
+
with gr.Column(scale=1):
|
| 105 |
+
hf_token = gr.Textbox(label="Huggingface Write Access Token")
|
| 106 |
+
base_model_name_or_path = gr.Textbox(label="Base Model")
|
| 107 |
+
peft_model_path = gr.Textbox(label="Adapter Model")
|
| 108 |
+
output_dir = gr.Textbox(label="Output Model Name")
|
| 109 |
+
|
| 110 |
+
with gr.Column(scale=1):
|
| 111 |
+
text = gr.Textbox(label="Output Model Name", lines=14)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
submit = gr.Button("Merge lora with adapters")
|
| 115 |
+
submit.click(fn=upload, inputs=[hf_token, base_model_name_or_path, peft_model_path, output_dir], outputs=text)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
demo.queue()
|
| 119 |
+
demo.launch(show_error=True)
|