Update app.py
Browse files
app.py
CHANGED
|
@@ -1,180 +1,220 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
import
|
|
|
|
| 4 |
import os
|
| 5 |
-
import
|
| 6 |
import uuid
|
| 7 |
-
from
|
| 8 |
-
from
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
from gradio_modal import Modal
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
AutoTokenizer,
|
| 15 |
-
TextIteratorStreamer,
|
| 16 |
-
)
|
| 17 |
-
from datasets import (
|
| 18 |
-
Dataset,
|
| 19 |
-
load_dataset,
|
| 20 |
-
concatenate_datasets,
|
| 21 |
-
DownloadMode,
|
| 22 |
-
)
|
| 23 |
-
from huggingface_hub import HfApi, login
|
| 24 |
-
import spaces
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
checkpoint = "
|
| 28 |
device = "cuda"
|
| 29 |
-
|
| 30 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 31 |
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
#
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
"conversation": conversation,
|
| 47 |
"satisfaction": satisfaction,
|
| 48 |
-
"feedback": feedback_text
|
| 49 |
}
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
try:
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
DATASET_REPO,
|
| 72 |
-
|
| 73 |
-
token=hf_token,
|
| 74 |
-
download_mode=DownloadMode.FORCE_REDOWNLOAD,
|
| 75 |
-
)
|
| 76 |
-
merged = concatenate_datasets([remote_ds, local_ds]).unique("id")
|
| 77 |
-
except FileNotFoundError:
|
| 78 |
-
merged = local_ds
|
| 79 |
-
except Exception:
|
| 80 |
-
HfApi(token=hf_token).create_repo(
|
| 81 |
-
repo_id=DATASET_REPO, repo_type="dataset", private=True
|
| 82 |
)
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
print(f"β
Pushed {len(local_ds)} rows; dataset now has {len(merged)} total.")
|
| 91 |
-
return True
|
| 92 |
-
|
| 93 |
-
# βββββββββββββββββββββββββββ chat backend ββββββββββββββββββββββββββββββββ
|
| 94 |
|
|
|
|
| 95 |
@spaces.GPU(duration=120)
|
| 96 |
-
def
|
| 97 |
-
|
| 98 |
-
conversation_state: List[Dict[str, str]],
|
| 99 |
-
temperature: float,
|
| 100 |
-
top_p: float):
|
| 101 |
-
"""Yields assistant text only; conversation_state is updated inβplace."""
|
| 102 |
-
|
| 103 |
-
# sync state
|
| 104 |
history.append({"role": "user", "content": message})
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True,
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
input_ids
|
| 116 |
-
max_new_tokens
|
| 117 |
-
temperature
|
| 118 |
-
top_p
|
| 119 |
-
do_sample
|
| 120 |
-
streamer
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
conversation_state = gr.State([])
|
| 148 |
-
|
| 149 |
with gr.Row():
|
| 150 |
with gr.Column(scale=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
chatbot = gr.ChatInterface(
|
| 152 |
-
|
| 153 |
-
additional_inputs=[
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
| 159 |
)
|
|
|
|
| 160 |
with gr.Column(scale=1):
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
with
|
| 164 |
-
|
| 165 |
-
gr.
|
| 166 |
-
|
| 167 |
-
"
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from threading import Thread
|
| 5 |
import os
|
| 6 |
+
import json
|
| 7 |
import uuid
|
| 8 |
+
from datasets import Dataset
|
| 9 |
+
from huggingface_hub import HfApi, login
|
| 10 |
+
import time
|
| 11 |
|
| 12 |
+
# Install required packages if not present
|
| 13 |
from gradio_modal import Modal
|
| 14 |
+
import huggingface_hub
|
| 15 |
+
import datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Model setup
|
| 18 |
+
checkpoint = "WillHeld/soft-raccoon"
|
| 19 |
device = "cuda"
|
|
|
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 21 |
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
| 22 |
|
| 23 |
+
# Constants for dataset
|
| 24 |
+
DATASET_REPO = "WillHeld/model-feedback" # Replace with your username
|
| 25 |
+
DATASET_PATH = "./feedback_data" # Local path to store feedback
|
| 26 |
+
DATASET_FILENAME = "feedback.jsonl" # Filename for feedback data
|
| 27 |
+
|
| 28 |
+
# Ensure feedback directory exists
|
| 29 |
+
os.makedirs(DATASET_PATH, exist_ok=True)
|
| 30 |
+
|
| 31 |
+
# Feedback storage functions
|
| 32 |
+
def save_feedback_locally(conversation, satisfaction, feedback_text):
|
| 33 |
+
"""Save feedback to a local JSONL file"""
|
| 34 |
+
# Create a unique ID for this feedback entry
|
| 35 |
+
feedback_id = str(uuid.uuid4())
|
| 36 |
+
|
| 37 |
+
# Create a timestamp
|
| 38 |
+
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
| 39 |
+
|
| 40 |
+
# Prepare the feedback data
|
| 41 |
+
feedback_data = {
|
| 42 |
+
"id": feedback_id,
|
| 43 |
+
"timestamp": timestamp,
|
| 44 |
"conversation": conversation,
|
| 45 |
"satisfaction": satisfaction,
|
| 46 |
+
"feedback": feedback_text
|
| 47 |
}
|
| 48 |
+
|
| 49 |
+
# Save to local file
|
| 50 |
+
feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
|
| 51 |
+
with open(feedback_file, "a") as f:
|
| 52 |
+
f.write(json.dumps(feedback_data) + "\n")
|
| 53 |
+
|
| 54 |
+
return feedback_id
|
| 55 |
+
|
| 56 |
+
def push_feedback_to_hub(hf_token=None):
|
| 57 |
+
"""Push the local feedback data to HuggingFace as a dataset"""
|
| 58 |
+
# Check if we have a token
|
| 59 |
+
if hf_token is None:
|
| 60 |
+
# Try to get token from environment variable
|
| 61 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 62 |
+
if hf_token is None:
|
| 63 |
+
print("No HuggingFace token provided. Cannot push to Hub.")
|
| 64 |
+
return False
|
| 65 |
+
|
|
|
|
| 66 |
try:
|
| 67 |
+
# Login to HuggingFace
|
| 68 |
+
login(token=hf_token)
|
| 69 |
+
|
| 70 |
+
# Check if we have data to push
|
| 71 |
+
feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
|
| 72 |
+
if not os.path.exists(feedback_file):
|
| 73 |
+
print("No feedback data to push.")
|
| 74 |
+
return False
|
| 75 |
+
|
| 76 |
+
# Load data from the JSONL file
|
| 77 |
+
with open(feedback_file, "r") as f:
|
| 78 |
+
feedback_data = [json.loads(line) for line in f]
|
| 79 |
+
|
| 80 |
+
# Create a dataset from the feedback data
|
| 81 |
+
dataset = Dataset.from_list(feedback_data)
|
| 82 |
+
|
| 83 |
+
# Push to Hub
|
| 84 |
+
dataset.push_to_hub(
|
| 85 |
DATASET_REPO,
|
| 86 |
+
private=True # Set to False if you want the dataset to be public
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
)
|
| 88 |
+
|
| 89 |
+
print(f"Feedback data pushed to {DATASET_REPO} successfully.")
|
| 90 |
+
return True
|
| 91 |
+
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print(f"Error pushing feedback data to Hub: {e}")
|
| 94 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
# Modified predict function to update conversation state
|
| 97 |
@spaces.GPU(duration=120)
|
| 98 |
+
def predict(message, history, temperature, top_p):
|
| 99 |
+
# Update history with user message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
history.append({"role": "user", "content": message})
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
input_text = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True)
|
| 104 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 105 |
+
|
| 106 |
+
# Create a streamer
|
| 107 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 108 |
+
|
| 109 |
+
# Set up generation parameters
|
| 110 |
+
generation_kwargs = {
|
| 111 |
+
"input_ids": inputs,
|
| 112 |
+
"max_new_tokens": 1024,
|
| 113 |
+
"temperature": float(temperature),
|
| 114 |
+
"top_p": float(top_p),
|
| 115 |
+
"do_sample": True,
|
| 116 |
+
"streamer": streamer,
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
# Run generation in a separate thread
|
| 120 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 121 |
+
thread.start()
|
| 122 |
+
|
| 123 |
+
# Yield from the streamer as tokens are generated
|
| 124 |
+
partial_text = ""
|
| 125 |
+
for new_text in streamer:
|
| 126 |
+
partial_text += new_text
|
| 127 |
+
yield partial_text, state
|
| 128 |
+
|
| 129 |
+
# After full generation, update state with assistant's response
|
| 130 |
+
history.append({"role": "assistant", "content": partial_text})
|
| 131 |
+
return partial_text
|
| 132 |
+
|
| 133 |
+
# Function to handle the research feedback submission
|
| 134 |
+
def submit_research_feedback(conversation_state, satisfaction, feedback_text):
|
| 135 |
+
"""Save user feedback both locally and to HuggingFace Hub"""
|
| 136 |
+
# Save locally first
|
| 137 |
+
feedback_id = save_feedback_locally(conversation_state, satisfaction, feedback_text)
|
| 138 |
+
|
| 139 |
+
# Get token from environment variable
|
| 140 |
+
env_token = os.environ.get("HF_TOKEN")
|
| 141 |
+
|
| 142 |
+
# Use environment token
|
| 143 |
+
push_success = push_feedback_to_hub(env_token)
|
| 144 |
+
|
| 145 |
+
if push_success:
|
| 146 |
+
status_msg = "Thank you for your valuable feedback! Your insights have been saved to the dataset."
|
| 147 |
+
else:
|
| 148 |
+
status_msg = "Thank you for your feedback! It has been saved locally, but couldn't be pushed to the dataset. Please check server logs."
|
| 149 |
+
|
| 150 |
+
return status_msg
|
| 151 |
+
|
| 152 |
+
# Create the Gradio blocks interface
|
| 153 |
+
with gr.Blocks() as demo:
|
| 154 |
+
# State to track conversation history
|
| 155 |
conversation_state = gr.State([])
|
| 156 |
+
|
| 157 |
with gr.Row():
|
| 158 |
with gr.Column(scale=3):
|
| 159 |
+
# Custom chat function wrapper to update state
|
| 160 |
+
def chat_with_state(message, history, state, temperature, top_p):
|
| 161 |
+
for partial_response, updated_state in predict(message, history, temperature, top_p):
|
| 162 |
+
# Update our state with each yield
|
| 163 |
+
state = history.copy()
|
| 164 |
+
yield partial_response, state
|
| 165 |
+
state = history.copy()
|
| 166 |
+
print(state)
|
| 167 |
+
return partial_response, state
|
| 168 |
+
|
| 169 |
+
# Create ChatInterface
|
| 170 |
chatbot = gr.ChatInterface(
|
| 171 |
+
chat_with_state,
|
| 172 |
+
additional_inputs=[
|
| 173 |
+
conversation_state,
|
| 174 |
+
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
| 175 |
+
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
|
| 176 |
+
],
|
| 177 |
+
additional_outputs=[conversation_state],
|
| 178 |
+
type="messages"
|
| 179 |
)
|
| 180 |
+
|
| 181 |
with gr.Column(scale=1):
|
| 182 |
+
report_button = gr.Button("Share Feedback", variant="primary")
|
| 183 |
+
|
| 184 |
+
# Create the modal with feedback form components
|
| 185 |
+
with Modal(visible=False) as feedback_modal:
|
| 186 |
+
with gr.Column():
|
| 187 |
+
gr.Markdown("## Research Preview Feedback")
|
| 188 |
+
gr.Markdown("Thank you for testing our research model. Your feedback (positive or negative) helps us improve!")
|
| 189 |
+
|
| 190 |
+
satisfaction = gr.Radio(
|
| 191 |
+
["Very satisfied", "Satisfied", "Neutral", "Unsatisfied", "Very unsatisfied"],
|
| 192 |
+
label="How would you rate your experience with this research model?",
|
| 193 |
+
value="Neutral"
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
feedback_text = gr.Textbox(
|
| 197 |
+
lines=5,
|
| 198 |
+
label="Share your observations (strengths, weaknesses, suggestions):",
|
| 199 |
+
placeholder="We welcome both positive feedback and constructive criticism to help improve this research prototype..."
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
submit_button = gr.Button("Submit Research Feedback", variant="primary")
|
| 203 |
+
response_text = gr.Textbox(label="Status", interactive=False)
|
| 204 |
+
|
| 205 |
+
# Connect the "Share Feedback" button to show the modal
|
| 206 |
+
report_button.click(
|
| 207 |
+
lambda: Modal(visible=True),
|
| 208 |
+
None,
|
| 209 |
+
feedback_modal
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# Connect the submit button to the submit_research_feedback function with the current conversation state
|
| 213 |
+
submit_button.click(
|
| 214 |
+
submit_research_feedback,
|
| 215 |
+
inputs=[conversation_state, satisfaction, feedback_text],
|
| 216 |
+
outputs=response_text
|
| 217 |
+
)
|
| 218 |
|
| 219 |
+
# Launch the demo
|
| 220 |
+
demo.launch()
|