Update app.py
Browse files
app.py
CHANGED
|
@@ -3,13 +3,95 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStream
|
|
| 3 |
import gradio as gr
|
| 4 |
from threading import Thread
|
| 5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from gradio_modal import Modal
|
|
|
|
| 7 |
|
|
|
|
| 8 |
checkpoint = "WillHeld/soft-raccoon"
|
| 9 |
device = "cuda"
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 11 |
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
@spaces.GPU(duration=120)
|
| 14 |
def predict(message, history, temperature, top_p):
|
| 15 |
history.append({"role": "user", "content": message})
|
|
@@ -27,7 +109,6 @@ def predict(message, history, temperature, top_p):
|
|
| 27 |
"top_p": float(top_p),
|
| 28 |
"do_sample": True,
|
| 29 |
"streamer": streamer,
|
| 30 |
-
"eos_token_id": 128009,
|
| 31 |
}
|
| 32 |
|
| 33 |
# Run generation in a separate thread
|
|
@@ -40,13 +121,30 @@ def predict(message, history, temperature, top_p):
|
|
| 40 |
partial_text += new_text
|
| 41 |
yield partial_text
|
| 42 |
|
| 43 |
-
# Function to handle the
|
| 44 |
-
def
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
|
|
|
| 49 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
| 50 |
with gr.Row():
|
| 51 |
with gr.Column(scale=3):
|
| 52 |
chatbot = gr.ChatInterface(
|
|
@@ -58,28 +156,43 @@ with gr.Blocks() as demo:
|
|
| 58 |
type="messages"
|
| 59 |
)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
with gr.Column(scale=1):
|
| 62 |
-
report_button = gr.Button("
|
| 63 |
|
| 64 |
# Create the modal with feedback form components
|
| 65 |
with Modal(visible=False) as feedback_modal:
|
| 66 |
with gr.Column():
|
| 67 |
-
gr.Markdown("##
|
| 68 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
satisfaction = gr.Radio(
|
| 71 |
["Very satisfied", "Satisfied", "Neutral", "Unsatisfied", "Very unsatisfied"],
|
| 72 |
-
label="How
|
| 73 |
value="Neutral"
|
| 74 |
)
|
| 75 |
|
| 76 |
feedback_text = gr.Textbox(
|
| 77 |
lines=5,
|
| 78 |
-
label="
|
| 79 |
-
placeholder="
|
| 80 |
)
|
| 81 |
|
| 82 |
-
submit_button = gr.Button("Submit Feedback", variant="primary")
|
| 83 |
response_text = gr.Textbox(label="Status", interactive=False)
|
| 84 |
|
| 85 |
# Connect the "File a Report" button to show the modal
|
|
@@ -89,11 +202,12 @@ with gr.Blocks() as demo:
|
|
| 89 |
feedback_modal
|
| 90 |
)
|
| 91 |
|
| 92 |
-
# Connect the submit button to the
|
| 93 |
submit_button.click(
|
| 94 |
-
|
| 95 |
-
inputs=[satisfaction, feedback_text],
|
| 96 |
outputs=response_text
|
| 97 |
)
|
| 98 |
|
|
|
|
| 99 |
demo.launch()
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from threading import Thread
|
| 5 |
import os
|
| 6 |
+
import json
|
| 7 |
+
import uuid
|
| 8 |
+
from datasets import Dataset
|
| 9 |
+
from huggingface_hub import HfApi, login
|
| 10 |
+
import huggingface_hub
|
| 11 |
+
import time
|
| 12 |
+
|
| 13 |
from gradio_modal import Modal
|
| 14 |
+
import datasets
|
| 15 |
|
| 16 |
+
# Model setup
|
| 17 |
checkpoint = "WillHeld/soft-raccoon"
|
| 18 |
device = "cuda"
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 20 |
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
| 21 |
|
| 22 |
+
# Constants for dataset
|
| 23 |
+
DATASET_REPO = "WillHeld/marin-feedback" # Replace with your username
|
| 24 |
+
DATASET_PATH = "./feedback_data" # Local path to store feedback
|
| 25 |
+
DATASET_FILENAME = "feedback.jsonl" # Filename for feedback data
|
| 26 |
+
|
| 27 |
+
# Ensure feedback directory exists
|
| 28 |
+
os.makedirs(DATASET_PATH, exist_ok=True)
|
| 29 |
+
|
| 30 |
+
# Feedback storage functions
|
| 31 |
+
def save_feedback_locally(conversation, satisfaction, feedback_text):
|
| 32 |
+
"""Save feedback to a local JSONL file"""
|
| 33 |
+
# Create a unique ID for this feedback entry
|
| 34 |
+
feedback_id = str(uuid.uuid4())
|
| 35 |
+
|
| 36 |
+
# Create a timestamp
|
| 37 |
+
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
| 38 |
+
|
| 39 |
+
# Prepare the feedback data
|
| 40 |
+
feedback_data = {
|
| 41 |
+
"id": feedback_id,
|
| 42 |
+
"timestamp": timestamp,
|
| 43 |
+
"conversation": conversation,
|
| 44 |
+
"satisfaction": satisfaction,
|
| 45 |
+
"feedback": feedback_text
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
# Save to local file
|
| 49 |
+
feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
|
| 50 |
+
with open(feedback_file, "a") as f:
|
| 51 |
+
f.write(json.dumps(feedback_data) + "\n")
|
| 52 |
+
|
| 53 |
+
return feedback_id
|
| 54 |
+
|
| 55 |
+
def push_feedback_to_hub(hf_token=None):
|
| 56 |
+
"""Push the local feedback data to HuggingFace as a dataset"""
|
| 57 |
+
# Check if we have a token
|
| 58 |
+
if hf_token is None:
|
| 59 |
+
# Try to get token from environment variable
|
| 60 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 61 |
+
if hf_token is None:
|
| 62 |
+
print("No HuggingFace token provided. Cannot push to Hub.")
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
# Login to HuggingFace
|
| 67 |
+
login(token=hf_token)
|
| 68 |
+
|
| 69 |
+
# Check if we have data to push
|
| 70 |
+
feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
|
| 71 |
+
if not os.path.exists(feedback_file):
|
| 72 |
+
print("No feedback data to push.")
|
| 73 |
+
return False
|
| 74 |
+
|
| 75 |
+
# Load data from the JSONL file
|
| 76 |
+
with open(feedback_file, "r") as f:
|
| 77 |
+
feedback_data = [json.loads(line) for line in f]
|
| 78 |
+
|
| 79 |
+
# Create a dataset from the feedback data
|
| 80 |
+
dataset = Dataset.from_list(feedback_data)
|
| 81 |
+
|
| 82 |
+
# Push to Hub
|
| 83 |
+
dataset.push_to_hub(
|
| 84 |
+
DATASET_REPO,
|
| 85 |
+
private=True # Set to False if you want the dataset to be public
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
print(f"Feedback data pushed to {DATASET_REPO} successfully.")
|
| 89 |
+
return True
|
| 90 |
+
|
| 91 |
+
except Exception as e:
|
| 92 |
+
print(f"Error pushing feedback data to Hub: {e}")
|
| 93 |
+
return False
|
| 94 |
+
|
| 95 |
@spaces.GPU(duration=120)
|
| 96 |
def predict(message, history, temperature, top_p):
|
| 97 |
history.append({"role": "user", "content": message})
|
|
|
|
| 109 |
"top_p": float(top_p),
|
| 110 |
"do_sample": True,
|
| 111 |
"streamer": streamer,
|
|
|
|
| 112 |
}
|
| 113 |
|
| 114 |
# Run generation in a separate thread
|
|
|
|
| 121 |
partial_text += new_text
|
| 122 |
yield partial_text
|
| 123 |
|
| 124 |
+
# Function to handle the research feedback submission
|
| 125 |
+
def submit_research_feedback(conversation_history, satisfaction, feedback_text, hf_token=None):
|
| 126 |
+
"""Save user feedback both locally and to HuggingFace Hub"""
|
| 127 |
+
# Save locally first
|
| 128 |
+
feedback_id = save_feedback_locally(conversation_history, satisfaction, feedback_text)
|
| 129 |
+
|
| 130 |
+
# Get token from environment variable
|
| 131 |
+
env_token = os.environ.get("HF_TOKEN")
|
| 132 |
+
|
| 133 |
+
# Use environment token, ignoring any passed token
|
| 134 |
+
push_success = push_feedback_to_hub(env_token)
|
| 135 |
+
|
| 136 |
+
if push_success:
|
| 137 |
+
status_msg = "Thank you for your valuable feedback! Your insights have been saved to the dataset."
|
| 138 |
+
else:
|
| 139 |
+
status_msg = "Thank you for your feedback! It has been saved locally, but couldn't be pushed to the dataset. Please check server logs."
|
| 140 |
+
|
| 141 |
+
return status_msg
|
| 142 |
|
| 143 |
+
# Create the Gradio interface
|
| 144 |
with gr.Blocks() as demo:
|
| 145 |
+
# Store conversation history
|
| 146 |
+
conversation_state = gr.State([])
|
| 147 |
+
|
| 148 |
with gr.Row():
|
| 149 |
with gr.Column(scale=3):
|
| 150 |
chatbot = gr.ChatInterface(
|
|
|
|
| 156 |
type="messages"
|
| 157 |
)
|
| 158 |
|
| 159 |
+
# Update conversation_state with each new message
|
| 160 |
+
chatbot.submit_btn.click(
|
| 161 |
+
lambda history: history,
|
| 162 |
+
inputs=[chatbot.chat_history],
|
| 163 |
+
outputs=[conversation_state]
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
with gr.Column(scale=1):
|
| 167 |
+
report_button = gr.Button("Share Feedback", variant="primary")
|
| 168 |
|
| 169 |
# Create the modal with feedback form components
|
| 170 |
with Modal(visible=False) as feedback_modal:
|
| 171 |
with gr.Column():
|
| 172 |
+
gr.Markdown("## Research Preview Feedback")
|
| 173 |
+
gr.Markdown("Thank you for testing our research model. Your feedback (positive or negative) helps us improve!")
|
| 174 |
+
|
| 175 |
+
# Optional: HF Token for pushing to Hub
|
| 176 |
+
hf_token_input = gr.Textbox(
|
| 177 |
+
label="HuggingFace Token (Optional)",
|
| 178 |
+
placeholder="Enter your HF token to push feedback to dataset",
|
| 179 |
+
type="password",
|
| 180 |
+
visible=True # Set to False in production if using environment variables
|
| 181 |
+
)
|
| 182 |
|
| 183 |
satisfaction = gr.Radio(
|
| 184 |
["Very satisfied", "Satisfied", "Neutral", "Unsatisfied", "Very unsatisfied"],
|
| 185 |
+
label="How would you rate your experience with this research model?",
|
| 186 |
value="Neutral"
|
| 187 |
)
|
| 188 |
|
| 189 |
feedback_text = gr.Textbox(
|
| 190 |
lines=5,
|
| 191 |
+
label="Share your observations (strengths, weaknesses, suggestions):",
|
| 192 |
+
placeholder="We welcome both positive feedback and constructive criticism to help improve this research prototype..."
|
| 193 |
)
|
| 194 |
|
| 195 |
+
submit_button = gr.Button("Submit Research Feedback", variant="primary")
|
| 196 |
response_text = gr.Textbox(label="Status", interactive=False)
|
| 197 |
|
| 198 |
# Connect the "File a Report" button to show the modal
|
|
|
|
| 202 |
feedback_modal
|
| 203 |
)
|
| 204 |
|
| 205 |
+
# Connect the submit button to the submit_research_feedback function
|
| 206 |
submit_button.click(
|
| 207 |
+
submit_research_feedback,
|
| 208 |
+
inputs=[conversation_state, satisfaction, feedback_text, hf_token_input],
|
| 209 |
outputs=response_text
|
| 210 |
)
|
| 211 |
|
| 212 |
+
# Launch the demo
|
| 213 |
demo.launch()
|