Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ from threading import Thread
|
|
| 5 |
import os
|
| 6 |
import json
|
| 7 |
import uuid
|
| 8 |
-
from datasets import Dataset
|
| 9 |
from huggingface_hub import HfApi, login
|
| 10 |
import time
|
| 11 |
|
|
@@ -28,6 +28,63 @@ DATASET_FILENAME = "feedback.jsonl" # Filename for feedback data
|
|
| 28 |
# Ensure feedback directory exists
|
| 29 |
os.makedirs(DATASET_PATH, exist_ok=True)
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Feedback storage functions
|
| 32 |
def save_feedback_locally(conversation, satisfaction, feedback_text):
|
| 33 |
"""Save feedback to a local JSONL file"""
|
|
@@ -96,13 +153,18 @@ def push_feedback_to_hub(hf_token=None):
|
|
| 96 |
# Modified predict function to update conversation state
|
| 97 |
@spaces.GPU(duration=120)
|
| 98 |
def predict(message, history, state, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
| 99 |
# Update history with user message
|
| 100 |
-
|
| 101 |
|
| 102 |
-
# Update the conversation state
|
| 103 |
-
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
input_text = tokenizer.apply_chat_template(
|
| 106 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 107 |
|
| 108 |
# Create a streamer
|
|
@@ -127,11 +189,22 @@ def predict(message, history, state, temperature, top_p):
|
|
| 127 |
partial_text = ""
|
| 128 |
for new_text in streamer:
|
| 129 |
partial_text += new_text
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
-
# After full generation, update state with assistant's response
|
| 133 |
-
history.append({"role": "assistant", "content": partial_text})
|
| 134 |
-
state = history.copy()
|
| 135 |
return partial_text, state
|
| 136 |
|
| 137 |
# Function to handle the research feedback submission
|
|
@@ -164,8 +237,8 @@ with gr.Blocks() as demo:
|
|
| 164 |
def chat_with_state(message, history, state, temperature, top_p):
|
| 165 |
for partial_response, updated_state in predict(message, history, state, temperature, top_p):
|
| 166 |
# Update our state with each yield
|
| 167 |
-
|
| 168 |
-
yield partial_response
|
| 169 |
|
| 170 |
# Create ChatInterface
|
| 171 |
chatbot = gr.ChatInterface(
|
|
@@ -175,7 +248,6 @@ with gr.Blocks() as demo:
|
|
| 175 |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
| 176 |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
|
| 177 |
],
|
| 178 |
-
additional_outputs=[conversation_state],
|
| 179 |
type="messages"
|
| 180 |
)
|
| 181 |
|
|
|
|
| 5 |
import os
|
| 6 |
import json
|
| 7 |
import uuid
|
| 8 |
+
from datasets import Dataset, load_dataset
|
| 9 |
from huggingface_hub import HfApi, login
|
| 10 |
import time
|
| 11 |
|
|
|
|
| 28 |
# Ensure feedback directory exists
|
| 29 |
os.makedirs(DATASET_PATH, exist_ok=True)
|
| 30 |
|
| 31 |
+
# Sync existing dataset from Hub if available
|
| 32 |
+
def sync_dataset_from_hub():
|
| 33 |
+
"""Download existing dataset from Hub and merge with local data"""
|
| 34 |
+
try:
|
| 35 |
+
# Try to get token from environment variable
|
| 36 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 37 |
+
if hf_token:
|
| 38 |
+
login(token=hf_token)
|
| 39 |
+
|
| 40 |
+
# Check if the dataset exists on Hub
|
| 41 |
+
api = HfApi()
|
| 42 |
+
try:
|
| 43 |
+
dataset_info = api.dataset_info(DATASET_REPO)
|
| 44 |
+
# Dataset exists, download it
|
| 45 |
+
print(f"Syncing existing dataset from {DATASET_REPO}")
|
| 46 |
+
remote_dataset = load_dataset(DATASET_REPO)
|
| 47 |
+
|
| 48 |
+
# Convert to list of dictionaries
|
| 49 |
+
remote_data = [item for item in remote_dataset['train']]
|
| 50 |
+
|
| 51 |
+
# Check if local file exists
|
| 52 |
+
local_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
|
| 53 |
+
local_data = []
|
| 54 |
+
|
| 55 |
+
if os.path.exists(local_file):
|
| 56 |
+
# Read local data
|
| 57 |
+
with open(local_file, 'r') as f:
|
| 58 |
+
for line in f:
|
| 59 |
+
try:
|
| 60 |
+
local_data.append(json.loads(line))
|
| 61 |
+
except json.JSONDecodeError:
|
| 62 |
+
continue
|
| 63 |
+
|
| 64 |
+
# Merge data (using IDs to avoid duplicates)
|
| 65 |
+
all_items = {}
|
| 66 |
+
for item in remote_data + local_data:
|
| 67 |
+
all_items[item['id']] = item
|
| 68 |
+
|
| 69 |
+
# Write back merged data
|
| 70 |
+
with open(local_file, 'w') as f:
|
| 71 |
+
for item in all_items.values():
|
| 72 |
+
f.write(json.dumps(item) + '\n')
|
| 73 |
+
|
| 74 |
+
print(f"Synced {len(all_items)} feedback items")
|
| 75 |
+
return True
|
| 76 |
+
|
| 77 |
+
except Exception as e:
|
| 78 |
+
print(f"Dataset {DATASET_REPO} does not exist yet or could not be accessed: {e}")
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
except Exception as e:
|
| 82 |
+
print(f"Error syncing dataset: {e}")
|
| 83 |
+
return False
|
| 84 |
+
|
| 85 |
+
# Call sync on startup
|
| 86 |
+
sync_dataset_from_hub()
|
| 87 |
+
|
| 88 |
# Feedback storage functions
|
| 89 |
def save_feedback_locally(conversation, satisfaction, feedback_text):
|
| 90 |
"""Save feedback to a local JSONL file"""
|
|
|
|
| 153 |
# Modified predict function to update conversation state
|
| 154 |
@spaces.GPU(duration=120)
|
| 155 |
def predict(message, history, state, temperature, top_p):
|
| 156 |
+
# Create a deep copy of history to ensure we don't modify the original
|
| 157 |
+
current_history = history.copy()
|
| 158 |
+
|
| 159 |
# Update history with user message
|
| 160 |
+
current_history.append({"role": "user", "content": message})
|
| 161 |
|
| 162 |
+
# Update the conversation state with user message
|
| 163 |
+
if not state:
|
| 164 |
+
state = []
|
| 165 |
+
state = current_history.copy()
|
| 166 |
|
| 167 |
+
input_text = tokenizer.apply_chat_template(current_history, tokenize=False, add_generation_prompt=True)
|
| 168 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 169 |
|
| 170 |
# Create a streamer
|
|
|
|
| 189 |
partial_text = ""
|
| 190 |
for new_text in streamer:
|
| 191 |
partial_text += new_text
|
| 192 |
+
|
| 193 |
+
# Create a temporary state with partial response
|
| 194 |
+
temp_history = current_history.copy()
|
| 195 |
+
temp_history.append({"role": "assistant", "content": partial_text})
|
| 196 |
+
temp_state = temp_history.copy()
|
| 197 |
+
|
| 198 |
+
yield partial_text, temp_state
|
| 199 |
+
|
| 200 |
+
# After full generation, update state with assistant's final response
|
| 201 |
+
current_history.append({"role": "assistant", "content": partial_text})
|
| 202 |
+
state = current_history.copy()
|
| 203 |
+
|
| 204 |
+
# Print debug info
|
| 205 |
+
print(f"Updated state with {len(state)} messages")
|
| 206 |
+
print(f"Last message: {state[-1]['role']}: {state[-1]['content'][:30]}...")
|
| 207 |
|
|
|
|
|
|
|
|
|
|
| 208 |
return partial_text, state
|
| 209 |
|
| 210 |
# Function to handle the research feedback submission
|
|
|
|
| 237 |
def chat_with_state(message, history, state, temperature, top_p):
|
| 238 |
for partial_response, updated_state in predict(message, history, state, temperature, top_p):
|
| 239 |
# Update our state with each yield
|
| 240 |
+
conversation_state.value = updated_state
|
| 241 |
+
yield partial_response
|
| 242 |
|
| 243 |
# Create ChatInterface
|
| 244 |
chatbot = gr.ChatInterface(
|
|
|
|
| 248 |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
| 249 |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
|
| 250 |
],
|
|
|
|
| 251 |
type="messages"
|
| 252 |
)
|
| 253 |
|