Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -48,17 +48,11 @@ def load_model(model_name, progress=gr.Progress()):
|
|
| 48 |
device_map="auto",
|
| 49 |
load_in_8bit=True
|
| 50 |
)
|
| 51 |
-
elif "llama" in model_name.lower() or "mistral" in model_name.lower():
|
| 52 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 53 |
-
model_name,
|
| 54 |
-
torch_dtype=torch.float16,
|
| 55 |
-
device_map="cpu"
|
| 56 |
-
)
|
| 57 |
else:
|
| 58 |
model = AutoModelForCausalLM.from_pretrained(
|
| 59 |
model_name,
|
| 60 |
torch_dtype=torch.float16,
|
| 61 |
-
device_map="
|
| 62 |
)
|
| 63 |
|
| 64 |
if tokenizer.pad_token is None:
|
|
@@ -87,7 +81,7 @@ def analyze_next_token(input_text, temperature, top_p, top_k):
|
|
| 87 |
if model is None or tokenizer is None:
|
| 88 |
return "Veuillez d'abord charger un modèle.", None, None
|
| 89 |
|
| 90 |
-
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 91 |
|
| 92 |
try:
|
| 93 |
with torch.no_grad():
|
|
@@ -106,7 +100,7 @@ def analyze_next_token(input_text, temperature, top_p, top_k):
|
|
| 106 |
prob_text += f"{word}: {prob:.2%}\n"
|
| 107 |
|
| 108 |
prob_plot = plot_probabilities(prob_data)
|
| 109 |
-
attention_plot = plot_attention(inputs["input_ids"][0], last_token_logits)
|
| 110 |
|
| 111 |
return prob_text, attention_plot, prob_plot
|
| 112 |
except Exception as e:
|
|
@@ -118,7 +112,7 @@ def generate_text(input_text, temperature, top_p, top_k):
|
|
| 118 |
if model is None or tokenizer is None:
|
| 119 |
return "Veuillez d'abord charger un modèle."
|
| 120 |
|
| 121 |
-
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 122 |
|
| 123 |
try:
|
| 124 |
with torch.no_grad():
|
|
|
|
| 48 |
device_map="auto",
|
| 49 |
load_in_8bit=True
|
| 50 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
else:
|
| 52 |
model = AutoModelForCausalLM.from_pretrained(
|
| 53 |
model_name,
|
| 54 |
torch_dtype=torch.float16,
|
| 55 |
+
device_map="auto"
|
| 56 |
)
|
| 57 |
|
| 58 |
if tokenizer.pad_token is None:
|
|
|
|
| 81 |
if model is None or tokenizer is None:
|
| 82 |
return "Veuillez d'abord charger un modèle.", None, None
|
| 83 |
|
| 84 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
| 85 |
|
| 86 |
try:
|
| 87 |
with torch.no_grad():
|
|
|
|
| 100 |
prob_text += f"{word}: {prob:.2%}\n"
|
| 101 |
|
| 102 |
prob_plot = plot_probabilities(prob_data)
|
| 103 |
+
attention_plot = plot_attention(inputs["input_ids"][0].cpu(), last_token_logits.cpu())
|
| 104 |
|
| 105 |
return prob_text, attention_plot, prob_plot
|
| 106 |
except Exception as e:
|
|
|
|
| 112 |
if model is None or tokenizer is None:
|
| 113 |
return "Veuillez d'abord charger un modèle."
|
| 114 |
|
| 115 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
| 116 |
|
| 117 |
try:
|
| 118 |
with torch.no_grad():
|