Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import matplotlib.pyplot as plt
|
|
| 7 |
import seaborn as sns
|
| 8 |
import numpy as np
|
| 9 |
import time
|
|
|
|
| 10 |
|
| 11 |
# Authentification
|
| 12 |
login(token=os.environ["HF_TOKEN"])
|
|
@@ -28,6 +29,23 @@ models = [
|
|
| 28 |
"croissantllm/CroissantLLMBase"
|
| 29 |
]
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Variables globales
|
| 32 |
model = None
|
| 33 |
tokenizer = None
|
|
@@ -38,14 +56,33 @@ def load_model(model_name, progress=gr.Progress()):
|
|
| 38 |
progress(0, desc="Chargement du tokenizer")
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 40 |
progress(0.5, desc="Chargement du modèle")
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
if tokenizer.pad_token is None:
|
| 48 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
| 49 |
progress(1.0, desc="Modèle chargé")
|
| 50 |
return f"Modèle {model_name} chargé avec succès."
|
| 51 |
except Exception as e:
|
|
@@ -63,18 +100,24 @@ def analyze_next_token(input_text, temperature, top_p, top_k):
|
|
| 63 |
if model is None or tokenizer is None:
|
| 64 |
return "Veuillez d'abord charger un modèle.", None, None
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
try:
|
| 69 |
with torch.no_grad():
|
| 70 |
outputs = model(**inputs)
|
| 71 |
|
| 72 |
last_token_logits = outputs.logits[0, -1, :]
|
| 73 |
-
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
|
| 74 |
|
| 75 |
-
top_k =
|
| 76 |
top_probs, top_indices = torch.topk(probabilities, top_k)
|
| 77 |
top_words = [ensure_token_display(tokenizer.decode([idx.item()])) for idx in top_indices]
|
|
|
|
| 78 |
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
|
| 79 |
|
| 80 |
prob_text = "Prochains tokens les plus probables :\n\n"
|
|
@@ -94,17 +137,22 @@ def generate_text(input_text, temperature, top_p, top_k):
|
|
| 94 |
if model is None or tokenizer is None:
|
| 95 |
return "Veuillez d'abord charger un modèle."
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
try:
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
|
| 109 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 110 |
return generated_text
|
|
@@ -139,7 +187,7 @@ def plot_attention(input_ids, last_token_logits):
|
|
| 139 |
top_attention_scores, _ = torch.topk(attention_scores, top_k)
|
| 140 |
|
| 141 |
fig, ax = plt.subplots(figsize=(14, 7))
|
| 142 |
-
sns.heatmap(top_attention_scores.unsqueeze(0).numpy(), annot=True, cmap="YlOrRd", cbar=True, ax=ax, fmt='.2%')
|
| 143 |
ax.set_xticklabels(input_tokens[-top_k:], rotation=45, ha="right", fontsize=10)
|
| 144 |
ax.set_yticklabels(["Attention"], rotation=0, fontsize=10)
|
| 145 |
ax.set_title("Scores d'attention pour les derniers tokens", fontsize=16)
|
|
@@ -158,7 +206,7 @@ def reset():
|
|
| 158 |
return "", 1.0, 1.0, 50, None, None, None, None
|
| 159 |
|
| 160 |
with gr.Blocks() as demo:
|
| 161 |
-
gr.Markdown("# Analyse et génération de texte")
|
| 162 |
|
| 163 |
with gr.Accordion("Sélection du modèle"):
|
| 164 |
model_dropdown = gr.Dropdown(choices=models, label="Choisissez un modèle")
|
|
@@ -179,7 +227,7 @@ with gr.Blocks() as demo:
|
|
| 179 |
attention_plot = gr.Plot(label="Visualisation de l'attention")
|
| 180 |
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
|
| 181 |
|
| 182 |
-
generate_button = gr.Button("Générer
|
| 183 |
generated_text = gr.Textbox(label="Texte généré")
|
| 184 |
|
| 185 |
reset_button = gr.Button("Réinitialiser")
|
|
|
|
| 7 |
import seaborn as sns
|
| 8 |
import numpy as np
|
| 9 |
import time
|
| 10 |
+
from langdetect import detect
|
| 11 |
|
| 12 |
# Authentification
|
| 13 |
login(token=os.environ["HF_TOKEN"])
|
|
|
|
| 29 |
"croissantllm/CroissantLLMBase"
|
| 30 |
]
|
| 31 |
|
| 32 |
+
# Dictionnaire des langues supportées par modèle
|
| 33 |
+
model_languages = {
|
| 34 |
+
"meta-llama/Llama-2-13b-hf": ["en"],
|
| 35 |
+
"meta-llama/Llama-2-7b-hf": ["en"],
|
| 36 |
+
"meta-llama/Llama-2-70b-hf": ["en"],
|
| 37 |
+
"meta-llama/Meta-Llama-3-8B": ["en"],
|
| 38 |
+
"meta-llama/Llama-3.2-3B": ["en", "de", "fr", "it", "pt", "hi", "es", "th"],
|
| 39 |
+
"meta-llama/Llama-3.1-8B": ["en", "de", "fr", "it", "pt", "hi", "es", "th"],
|
| 40 |
+
"mistralai/Mistral-7B-v0.1": ["en"],
|
| 41 |
+
"mistralai/Mixtral-8x7B-v0.1": ["en", "fr", "it", "de", "es"],
|
| 42 |
+
"mistralai/Mistral-7B-v0.3": ["en"],
|
| 43 |
+
"google/gemma-2-2b": ["en"],
|
| 44 |
+
"google/gemma-2-9b": ["en"],
|
| 45 |
+
"google/gemma-2-27b": ["en"],
|
| 46 |
+
"croissantllm/CroissantLLMBase": ["en", "fr"]
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
# Variables globales
|
| 50 |
model = None
|
| 51 |
tokenizer = None
|
|
|
|
| 56 |
progress(0, desc="Chargement du tokenizer")
|
| 57 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 58 |
progress(0.5, desc="Chargement du modèle")
|
| 59 |
+
|
| 60 |
+
# Configurations spécifiques par modèle
|
| 61 |
+
if "mixtral" in model_name.lower():
|
| 62 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 63 |
+
model_name,
|
| 64 |
+
torch_dtype=torch.float16,
|
| 65 |
+
device_map="auto",
|
| 66 |
+
attn_implementation="flash_attention_2",
|
| 67 |
+
load_in_8bit=True
|
| 68 |
+
)
|
| 69 |
+
elif "llama" in model_name.lower() or "mistral" in model_name.lower():
|
| 70 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 71 |
+
model_name,
|
| 72 |
+
torch_dtype=torch.float16,
|
| 73 |
+
device_map="auto",
|
| 74 |
+
attn_implementation="flash_attention_2"
|
| 75 |
+
)
|
| 76 |
+
else:
|
| 77 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 78 |
+
model_name,
|
| 79 |
+
torch_dtype=torch.float16,
|
| 80 |
+
device_map="auto"
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
if tokenizer.pad_token is None:
|
| 84 |
tokenizer.pad_token = tokenizer.eos_token
|
| 85 |
+
|
| 86 |
progress(1.0, desc="Modèle chargé")
|
| 87 |
return f"Modèle {model_name} chargé avec succès."
|
| 88 |
except Exception as e:
|
|
|
|
| 100 |
if model is None or tokenizer is None:
|
| 101 |
return "Veuillez d'abord charger un modèle.", None, None
|
| 102 |
|
| 103 |
+
# Détection de la langue
|
| 104 |
+
detected_lang = detect(input_text)
|
| 105 |
+
if detected_lang not in model_languages.get(model.config._name_or_path, []):
|
| 106 |
+
return f"Langue détectée ({detected_lang}) non supportée par ce modèle.", None, None
|
| 107 |
+
|
| 108 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
| 109 |
|
| 110 |
try:
|
| 111 |
with torch.no_grad():
|
| 112 |
outputs = model(**inputs)
|
| 113 |
|
| 114 |
last_token_logits = outputs.logits[0, -1, :]
|
| 115 |
+
probabilities = torch.nn.functional.softmax(last_token_logits / temperature, dim=-1)
|
| 116 |
|
| 117 |
+
top_k = min(top_k, probabilities.size(-1))
|
| 118 |
top_probs, top_indices = torch.topk(probabilities, top_k)
|
| 119 |
top_words = [ensure_token_display(tokenizer.decode([idx.item()])) for idx in top_indices]
|
| 120 |
+
|
| 121 |
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
|
| 122 |
|
| 123 |
prob_text = "Prochains tokens les plus probables :\n\n"
|
|
|
|
| 137 |
if model is None or tokenizer is None:
|
| 138 |
return "Veuillez d'abord charger un modèle."
|
| 139 |
|
| 140 |
+
# Détection de la langue
|
| 141 |
+
detected_lang = detect(input_text)
|
| 142 |
+
if detected_lang not in model_languages.get(model.config._name_or_path, []):
|
| 143 |
+
return f"Langue détectée ({detected_lang}) non supportée par ce modèle."
|
| 144 |
+
|
| 145 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
| 146 |
|
| 147 |
try:
|
| 148 |
+
outputs = model.generate(
|
| 149 |
+
**inputs,
|
| 150 |
+
max_new_tokens=50,
|
| 151 |
+
do_sample=True,
|
| 152 |
+
temperature=temperature,
|
| 153 |
+
top_p=top_p,
|
| 154 |
+
top_k=top_k
|
| 155 |
+
)
|
| 156 |
|
| 157 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 158 |
return generated_text
|
|
|
|
| 187 |
top_attention_scores, _ = torch.topk(attention_scores, top_k)
|
| 188 |
|
| 189 |
fig, ax = plt.subplots(figsize=(14, 7))
|
| 190 |
+
sns.heatmap(top_attention_scores.unsqueeze(0).cpu().numpy(), annot=True, cmap="YlOrRd", cbar=True, ax=ax, fmt='.2%')
|
| 191 |
ax.set_xticklabels(input_tokens[-top_k:], rotation=45, ha="right", fontsize=10)
|
| 192 |
ax.set_yticklabels(["Attention"], rotation=0, fontsize=10)
|
| 193 |
ax.set_title("Scores d'attention pour les derniers tokens", fontsize=16)
|
|
|
|
| 206 |
return "", 1.0, 1.0, 50, None, None, None, None
|
| 207 |
|
| 208 |
with gr.Blocks() as demo:
|
| 209 |
+
gr.Markdown("# Analyse et génération de texte avec LLM")
|
| 210 |
|
| 211 |
with gr.Accordion("Sélection du modèle"):
|
| 212 |
model_dropdown = gr.Dropdown(choices=models, label="Choisissez un modèle")
|
|
|
|
| 227 |
attention_plot = gr.Plot(label="Visualisation de l'attention")
|
| 228 |
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
|
| 229 |
|
| 230 |
+
generate_button = gr.Button("Générer la suite du texte")
|
| 231 |
generated_text = gr.Textbox(label="Texte généré")
|
| 232 |
|
| 233 |
reset_button = gr.Button("Réinitialiser")
|