Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,38 +1,75 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import
|
|
|
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
| 6 |
-
from huggingface_hub import login
|
| 7 |
-
import os
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
-
# Liste des modèles
|
| 13 |
-
|
| 14 |
-
"meta-llama/Llama-2-13b",
|
| 15 |
-
"meta-llama/
|
| 16 |
-
"
|
| 17 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
"croissantllm/CroissantLLMBase"
|
| 19 |
]
|
| 20 |
|
| 21 |
-
#
|
| 22 |
model = None
|
| 23 |
tokenizer = None
|
| 24 |
|
| 25 |
def load_model(model_name):
|
| 26 |
global model, tokenizer
|
|
|
|
|
|
|
| 27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 28 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
def generate_text(input_text, temperature, top_p, top_k):
|
| 38 |
global model, tokenizer
|
|
@@ -46,8 +83,10 @@ def generate_text(input_text, temperature, top_p, top_k):
|
|
| 46 |
temperature=temperature,
|
| 47 |
top_p=top_p,
|
| 48 |
top_k=top_k,
|
|
|
|
| 49 |
output_attentions=True,
|
| 50 |
-
return_dict_in_generate=True
|
|
|
|
| 51 |
)
|
| 52 |
|
| 53 |
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
|
@@ -71,69 +110,42 @@ def generate_text(input_text, temperature, top_p, top_k):
|
|
| 71 |
|
| 72 |
return generated_text, plot_attention(attention_data), plot_probabilities(prob_data)
|
| 73 |
|
| 74 |
-
def
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
im = ax.imshow(attention, cmap='viridis')
|
| 80 |
-
plt.colorbar(im)
|
| 81 |
-
ax.set_xticks(range(len(tokens)))
|
| 82 |
-
ax.set_yticks(range(len(tokens)))
|
| 83 |
-
ax.set_xticklabels(tokens, rotation=90)
|
| 84 |
-
ax.set_yticklabels(tokens)
|
| 85 |
-
ax.set_title("Carte d'attention")
|
| 86 |
-
plt.tight_layout()
|
| 87 |
-
return fig
|
| 88 |
-
|
| 89 |
-
def plot_probabilities(prob_data):
|
| 90 |
-
words = list(prob_data.keys())
|
| 91 |
-
probs = list(prob_data.values())
|
| 92 |
-
|
| 93 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
| 94 |
-
ax.bar(words, probs)
|
| 95 |
-
ax.set_title("Probabilités des tokens suivants les plus probables")
|
| 96 |
-
ax.set_xlabel("Tokens")
|
| 97 |
-
ax.set_ylabel("Probabilité")
|
| 98 |
-
plt.xticks(rotation=45)
|
| 99 |
-
plt.tight_layout()
|
| 100 |
-
return fig
|
| 101 |
-
|
| 102 |
-
def reset():
|
| 103 |
-
return "", 1.0, 1.0, 50, None, None, None
|
| 104 |
|
| 105 |
-
# Interface Gradio
|
| 106 |
with gr.Blocks() as demo:
|
| 107 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
with gr.
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
with gr.Row():
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
|
| 124 |
with gr.Row():
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
# Association des actions avec les boutons
|
| 131 |
-
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
|
| 132 |
-
generate_button.click(generate_text,
|
| 133 |
-
inputs=[input_text, temperature, top_p, top_k],
|
| 134 |
-
outputs=[output_text, attention_plot, prob_plot])
|
| 135 |
-
reset_button.click(reset,
|
| 136 |
-
outputs=[input_text, temperature, top_p, top_k, output_text, attention_plot, prob_plot])
|
| 137 |
|
| 138 |
-
# Lancement de l'application
|
| 139 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
from huggingface_hub import login
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import numpy as np
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Login to Hugging Face with token
|
| 9 |
+
HF_TOKEN = "hf_token" # Remplacer par ton token Hugging Face
|
| 10 |
+
login(HF_TOKEN)
|
| 11 |
|
| 12 |
+
# Liste des modèles
|
| 13 |
+
model_list = [
|
| 14 |
+
"meta-llama/Llama-2-13b",
|
| 15 |
+
"meta-llama/Llama-2-7b",
|
| 16 |
+
"meta-llama/Llama-2-70b",
|
| 17 |
+
"meta-llama/Meta-Llama-3-8B",
|
| 18 |
+
"meta-llama/Llama-3.2-3B",
|
| 19 |
+
"meta-llama/Llama-3.1-8B",
|
| 20 |
+
"mistralai/Mistral-7B-v0.1",
|
| 21 |
+
"mistralai/Mixtral-8x7B-v0.1",
|
| 22 |
+
"mistralai/Mistral-7B-v0.3",
|
| 23 |
+
"google/gemma-2-2b",
|
| 24 |
+
"google/gemma-2-9b",
|
| 25 |
+
"google/gemma-2-27b",
|
| 26 |
"croissantllm/CroissantLLMBase"
|
| 27 |
]
|
| 28 |
|
| 29 |
+
# Charger le modèle et le tokenizer
|
| 30 |
model = None
|
| 31 |
tokenizer = None
|
| 32 |
|
| 33 |
def load_model(model_name):
|
| 34 |
global model, tokenizer
|
| 35 |
+
print(f"Chargement du modèle {model_name}...")
|
| 36 |
+
|
| 37 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16, attn_implementation="eager")
|
| 39 |
|
| 40 |
+
print("Modèle chargé avec succès.")
|
| 41 |
+
return f"Modèle {model_name} chargé."
|
| 42 |
+
|
| 43 |
+
def plot_attention(attention_data):
|
| 44 |
+
tokens = attention_data['tokens']
|
| 45 |
+
attention = attention_data['attention']
|
| 46 |
|
| 47 |
+
fig, ax = plt.subplots(figsize=(10, 10))
|
| 48 |
+
cax = ax.matshow(attention, cmap='viridis')
|
| 49 |
+
fig.colorbar(cax)
|
| 50 |
+
|
| 51 |
+
ax.set_xticklabels([''] + tokens, rotation=90)
|
| 52 |
+
ax.set_yticklabels([''] + tokens)
|
| 53 |
+
|
| 54 |
+
plt.xlabel("Tokens")
|
| 55 |
+
plt.ylabel("Tokens")
|
| 56 |
+
plt.title("Attention Heatmap")
|
| 57 |
+
|
| 58 |
+
plt.tight_layout()
|
| 59 |
+
plt.savefig('attention_plot.png')
|
| 60 |
+
return 'attention_plot.png'
|
| 61 |
+
|
| 62 |
+
def plot_probabilities(prob_data):
|
| 63 |
+
words, probs = zip(*prob_data.items())
|
| 64 |
+
|
| 65 |
+
plt.figure(figsize=(6, 4))
|
| 66 |
+
plt.barh(words, probs, color='skyblue')
|
| 67 |
+
plt.xlabel('Probabilities')
|
| 68 |
+
plt.title('Top Probable Words')
|
| 69 |
+
|
| 70 |
+
plt.tight_layout()
|
| 71 |
+
plt.savefig('probabilities_plot.png')
|
| 72 |
+
return 'probabilities_plot.png'
|
| 73 |
|
| 74 |
def generate_text(input_text, temperature, top_p, top_k):
|
| 75 |
global model, tokenizer
|
|
|
|
| 83 |
temperature=temperature,
|
| 84 |
top_p=top_p,
|
| 85 |
top_k=top_k,
|
| 86 |
+
output_scores=True,
|
| 87 |
output_attentions=True,
|
| 88 |
+
return_dict_in_generate=True,
|
| 89 |
+
return_legacy_cache=True
|
| 90 |
)
|
| 91 |
|
| 92 |
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
|
|
|
| 110 |
|
| 111 |
return generated_text, plot_attention(attention_data), plot_probabilities(prob_data)
|
| 112 |
|
| 113 |
+
def reset_app():
|
| 114 |
+
global model, tokenizer
|
| 115 |
+
model = None
|
| 116 |
+
tokenizer = None
|
| 117 |
+
return "Application réinitialisée."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
# Interface utilisateur Gradio
|
| 120 |
with gr.Blocks() as demo:
|
| 121 |
+
with gr.Row():
|
| 122 |
+
model_selection = gr.Accordion("Sélection du modèle", open=True)
|
| 123 |
+
with model_selection:
|
| 124 |
+
model_name = gr.Dropdown(choices=model_list, label="Choisir un modèle", value=model_list[0])
|
| 125 |
+
load_model_button = gr.Button("Charger le modèle")
|
| 126 |
+
load_status = gr.Textbox(label="Statut du modèle", interactive=False)
|
| 127 |
|
| 128 |
+
with gr.Row():
|
| 129 |
+
temperature = gr.Slider(0.0, 1.0, value=0.7, label="Température")
|
| 130 |
+
top_p = gr.Slider(0.0, 1.0, value=0.9, label="Top-p")
|
| 131 |
+
top_k = gr.Slider(1, 100, value=50, label="Top-k")
|
| 132 |
|
| 133 |
with gr.Row():
|
| 134 |
+
input_text = gr.Textbox(label="Entrer le texte")
|
| 135 |
+
generate_button = gr.Button("Générer")
|
|
|
|
| 136 |
|
| 137 |
+
with gr.Row():
|
| 138 |
+
output_text = gr.Textbox(label="Texte généré", interactive=False)
|
| 139 |
|
| 140 |
+
with gr.Row():
|
| 141 |
+
attention_plot = gr.Image(label="Carte de chaleur des attentions")
|
| 142 |
+
prob_plot = gr.Image(label="Probabilités des mots les plus probables")
|
| 143 |
|
| 144 |
with gr.Row():
|
| 145 |
+
reset_button = gr.Button("Réinitialiser l'application")
|
| 146 |
+
|
| 147 |
+
load_model_button.click(load_model, inputs=[model_name], outputs=[load_status])
|
| 148 |
+
generate_button.click(generate_text, inputs=[input_text, temperature, top_p, top_k], outputs=[output_text, attention_plot, prob_plot])
|
| 149 |
+
reset_button.click(reset_app)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
|
|
|
| 151 |
demo.launch()
|