Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,30 +7,12 @@ import matplotlib.pyplot as plt
|
|
| 7 |
import seaborn as sns
|
| 8 |
import numpy as np
|
| 9 |
import time
|
| 10 |
-
from langdetect import detect
|
| 11 |
|
| 12 |
# Authentification
|
| 13 |
login(token=os.environ["HF_TOKEN"])
|
| 14 |
|
| 15 |
-
# Liste des modèles
|
| 16 |
-
|
| 17 |
-
"meta-llama/Llama-2-13b-hf",
|
| 18 |
-
"meta-llama/Llama-2-7b-hf",
|
| 19 |
-
"meta-llama/Llama-2-70b-hf",
|
| 20 |
-
"meta-llama/Meta-Llama-3-8B",
|
| 21 |
-
"meta-llama/Llama-3.2-3B",
|
| 22 |
-
"meta-llama/Llama-3.1-8B",
|
| 23 |
-
"mistralai/Mistral-7B-v0.1",
|
| 24 |
-
"mistralai/Mixtral-8x7B-v0.1",
|
| 25 |
-
"mistralai/Mistral-7B-v0.3",
|
| 26 |
-
"google/gemma-2-2b",
|
| 27 |
-
"google/gemma-2-9b",
|
| 28 |
-
"google/gemma-2-27b",
|
| 29 |
-
"croissantllm/CroissantLLMBase"
|
| 30 |
-
]
|
| 31 |
-
|
| 32 |
-
# Dictionnaire des langues supportées par modèle
|
| 33 |
-
model_languages = {
|
| 34 |
"meta-llama/Llama-2-13b-hf": ["en"],
|
| 35 |
"meta-llama/Llama-2-7b-hf": ["en"],
|
| 36 |
"meta-llama/Llama-2-70b-hf": ["en"],
|
|
@@ -49,6 +31,7 @@ model_languages = {
|
|
| 49 |
# Variables globales
|
| 50 |
model = None
|
| 51 |
tokenizer = None
|
|
|
|
| 52 |
|
| 53 |
def load_model(model_name, progress=gr.Progress()):
|
| 54 |
global model, tokenizer
|
|
@@ -57,21 +40,40 @@ def load_model(model_name, progress=gr.Progress()):
|
|
| 57 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 58 |
progress(0.5, desc="Chargement du modèle")
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
if tokenizer.pad_token is None:
|
| 69 |
tokenizer.pad_token = tokenizer.eos_token
|
| 70 |
|
| 71 |
progress(1.0, desc="Modèle chargé")
|
| 72 |
-
|
|
|
|
| 73 |
except Exception as e:
|
| 74 |
-
return f"Erreur lors du chargement du modèle : {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
def ensure_token_display(token):
|
| 77 |
"""Assure que le token est affiché correctement."""
|
|
@@ -80,29 +82,23 @@ def ensure_token_display(token):
|
|
| 80 |
return token
|
| 81 |
|
| 82 |
def analyze_next_token(input_text, temperature, top_p, top_k):
|
| 83 |
-
global model, tokenizer
|
| 84 |
|
| 85 |
if model is None or tokenizer is None:
|
| 86 |
return "Veuillez d'abord charger un modèle.", None, None
|
| 87 |
|
| 88 |
-
|
| 89 |
-
detected_lang = detect(input_text)
|
| 90 |
-
if detected_lang not in model_languages.get(model.config._name_or_path, []):
|
| 91 |
-
return f"Langue détectée ({detected_lang}) non supportée par ce modèle.", None, None
|
| 92 |
-
|
| 93 |
-
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
| 94 |
|
| 95 |
try:
|
| 96 |
with torch.no_grad():
|
| 97 |
outputs = model(**inputs)
|
| 98 |
|
| 99 |
last_token_logits = outputs.logits[0, -1, :]
|
| 100 |
-
probabilities = torch.nn.functional.softmax(last_token_logits
|
| 101 |
|
| 102 |
-
top_k =
|
| 103 |
top_probs, top_indices = torch.topk(probabilities, top_k)
|
| 104 |
top_words = [ensure_token_display(tokenizer.decode([idx.item()])) for idx in top_indices]
|
| 105 |
-
|
| 106 |
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
|
| 107 |
|
| 108 |
prob_text = "Prochains tokens les plus probables :\n\n"
|
|
@@ -117,27 +113,22 @@ def analyze_next_token(input_text, temperature, top_p, top_k):
|
|
| 117 |
return f"Erreur lors de l'analyse : {str(e)}", None, None
|
| 118 |
|
| 119 |
def generate_text(input_text, temperature, top_p, top_k):
|
| 120 |
-
global model, tokenizer
|
| 121 |
|
| 122 |
if model is None or tokenizer is None:
|
| 123 |
return "Veuillez d'abord charger un modèle."
|
| 124 |
|
| 125 |
-
|
| 126 |
-
detected_lang = detect(input_text)
|
| 127 |
-
if detected_lang not in model_languages.get(model.config._name_or_path, []):
|
| 128 |
-
return f"Langue détectée ({detected_lang}) non supportée par ce modèle."
|
| 129 |
-
|
| 130 |
-
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
| 131 |
|
| 132 |
try:
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
|
| 142 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 143 |
return generated_text
|
|
@@ -172,7 +163,7 @@ def plot_attention(input_ids, last_token_logits):
|
|
| 172 |
top_attention_scores, _ = torch.topk(attention_scores, top_k)
|
| 173 |
|
| 174 |
fig, ax = plt.subplots(figsize=(14, 7))
|
| 175 |
-
sns.heatmap(top_attention_scores.unsqueeze(0).
|
| 176 |
ax.set_xticklabels(input_tokens[-top_k:], rotation=45, ha="right", fontsize=10)
|
| 177 |
ax.set_yticklabels(["Attention"], rotation=0, fontsize=10)
|
| 178 |
ax.set_title("Scores d'attention pour les derniers tokens", fontsize=16)
|
|
@@ -185,18 +176,21 @@ def plot_attention(input_ids, last_token_logits):
|
|
| 185 |
return fig
|
| 186 |
|
| 187 |
def reset():
|
| 188 |
-
global model, tokenizer
|
| 189 |
model = None
|
| 190 |
tokenizer = None
|
| 191 |
-
|
|
|
|
| 192 |
|
| 193 |
with gr.Blocks() as demo:
|
| 194 |
-
gr.Markdown("# Analyse et génération de texte
|
| 195 |
|
| 196 |
with gr.Accordion("Sélection du modèle"):
|
| 197 |
-
model_dropdown = gr.Dropdown(choices=
|
| 198 |
load_button = gr.Button("Charger le modèle")
|
| 199 |
load_output = gr.Textbox(label="Statut du chargement")
|
|
|
|
|
|
|
| 200 |
|
| 201 |
with gr.Row():
|
| 202 |
temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
|
|
@@ -212,12 +206,13 @@ with gr.Blocks() as demo:
|
|
| 212 |
attention_plot = gr.Plot(label="Visualisation de l'attention")
|
| 213 |
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
|
| 214 |
|
| 215 |
-
generate_button = gr.Button("Générer
|
| 216 |
generated_text = gr.Textbox(label="Texte généré")
|
| 217 |
|
| 218 |
reset_button = gr.Button("Réinitialiser")
|
| 219 |
|
| 220 |
-
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
|
|
|
|
| 221 |
analyze_button.click(analyze_next_token,
|
| 222 |
inputs=[input_text, temperature, top_p, top_k],
|
| 223 |
outputs=[next_token_probs, attention_plot, prob_plot])
|
|
@@ -225,7 +220,7 @@ with gr.Blocks() as demo:
|
|
| 225 |
inputs=[input_text, temperature, top_p, top_k],
|
| 226 |
outputs=[generated_text])
|
| 227 |
reset_button.click(reset,
|
| 228 |
-
outputs=[input_text, temperature, top_p, top_k, next_token_probs, attention_plot, prob_plot, generated_text])
|
| 229 |
|
| 230 |
if __name__ == "__main__":
|
| 231 |
demo.launch()
|
|
|
|
| 7 |
import seaborn as sns
|
| 8 |
import numpy as np
|
| 9 |
import time
|
|
|
|
| 10 |
|
| 11 |
# Authentification
|
| 12 |
login(token=os.environ["HF_TOKEN"])
|
| 13 |
|
| 14 |
+
# Liste des modèles et leurs langues supportées
|
| 15 |
+
models_and_languages = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"meta-llama/Llama-2-13b-hf": ["en"],
|
| 17 |
"meta-llama/Llama-2-7b-hf": ["en"],
|
| 18 |
"meta-llama/Llama-2-70b-hf": ["en"],
|
|
|
|
| 31 |
# Variables globales
|
| 32 |
model = None
|
| 33 |
tokenizer = None
|
| 34 |
+
selected_language = None
|
| 35 |
|
| 36 |
def load_model(model_name, progress=gr.Progress()):
|
| 37 |
global model, tokenizer
|
|
|
|
| 40 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 41 |
progress(0.5, desc="Chargement du modèle")
|
| 42 |
|
| 43 |
+
# Configurations spécifiques par modèle
|
| 44 |
+
if "mixtral" in model_name.lower():
|
| 45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
+
model_name,
|
| 47 |
+
torch_dtype=torch.float16,
|
| 48 |
+
device_map="auto",
|
| 49 |
+
load_in_8bit=True
|
| 50 |
+
)
|
| 51 |
+
elif "llama" in model_name.lower() or "mistral" in model_name.lower():
|
| 52 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 53 |
+
model_name,
|
| 54 |
+
torch_dtype=torch.float16,
|
| 55 |
+
device_map="auto"
|
| 56 |
+
)
|
| 57 |
+
else:
|
| 58 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 59 |
+
model_name,
|
| 60 |
+
torch_dtype=torch.float16,
|
| 61 |
+
device_map="auto"
|
| 62 |
+
)
|
| 63 |
|
| 64 |
if tokenizer.pad_token is None:
|
| 65 |
tokenizer.pad_token = tokenizer.eos_token
|
| 66 |
|
| 67 |
progress(1.0, desc="Modèle chargé")
|
| 68 |
+
available_languages = models_and_languages[model_name]
|
| 69 |
+
return f"Modèle {model_name} chargé avec succès. Langues disponibles : {', '.join(available_languages)}", gr.Dropdown.update(choices=available_languages, value=available_languages[0], visible=True)
|
| 70 |
except Exception as e:
|
| 71 |
+
return f"Erreur lors du chargement du modèle : {str(e)}", gr.Dropdown.update(visible=False)
|
| 72 |
+
|
| 73 |
+
def set_language(lang):
|
| 74 |
+
global selected_language
|
| 75 |
+
selected_language = lang
|
| 76 |
+
return f"Langue sélectionnée : {lang}"
|
| 77 |
|
| 78 |
def ensure_token_display(token):
|
| 79 |
"""Assure que le token est affiché correctement."""
|
|
|
|
| 82 |
return token
|
| 83 |
|
| 84 |
def analyze_next_token(input_text, temperature, top_p, top_k):
|
| 85 |
+
global model, tokenizer, selected_language
|
| 86 |
|
| 87 |
if model is None or tokenizer is None:
|
| 88 |
return "Veuillez d'abord charger un modèle.", None, None
|
| 89 |
|
| 90 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
try:
|
| 93 |
with torch.no_grad():
|
| 94 |
outputs = model(**inputs)
|
| 95 |
|
| 96 |
last_token_logits = outputs.logits[0, -1, :]
|
| 97 |
+
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
|
| 98 |
|
| 99 |
+
top_k = 10
|
| 100 |
top_probs, top_indices = torch.topk(probabilities, top_k)
|
| 101 |
top_words = [ensure_token_display(tokenizer.decode([idx.item()])) for idx in top_indices]
|
|
|
|
| 102 |
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
|
| 103 |
|
| 104 |
prob_text = "Prochains tokens les plus probables :\n\n"
|
|
|
|
| 113 |
return f"Erreur lors de l'analyse : {str(e)}", None, None
|
| 114 |
|
| 115 |
def generate_text(input_text, temperature, top_p, top_k):
|
| 116 |
+
global model, tokenizer, selected_language
|
| 117 |
|
| 118 |
if model is None or tokenizer is None:
|
| 119 |
return "Veuillez d'abord charger un modèle."
|
| 120 |
|
| 121 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
try:
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
outputs = model.generate(
|
| 126 |
+
**inputs,
|
| 127 |
+
max_new_tokens=1,
|
| 128 |
+
temperature=temperature,
|
| 129 |
+
top_p=top_p,
|
| 130 |
+
top_k=top_k
|
| 131 |
+
)
|
| 132 |
|
| 133 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 134 |
return generated_text
|
|
|
|
| 163 |
top_attention_scores, _ = torch.topk(attention_scores, top_k)
|
| 164 |
|
| 165 |
fig, ax = plt.subplots(figsize=(14, 7))
|
| 166 |
+
sns.heatmap(top_attention_scores.unsqueeze(0).numpy(), annot=True, cmap="YlOrRd", cbar=True, ax=ax, fmt='.2%')
|
| 167 |
ax.set_xticklabels(input_tokens[-top_k:], rotation=45, ha="right", fontsize=10)
|
| 168 |
ax.set_yticklabels(["Attention"], rotation=0, fontsize=10)
|
| 169 |
ax.set_title("Scores d'attention pour les derniers tokens", fontsize=16)
|
|
|
|
| 176 |
return fig
|
| 177 |
|
| 178 |
def reset():
|
| 179 |
+
global model, tokenizer, selected_language
|
| 180 |
model = None
|
| 181 |
tokenizer = None
|
| 182 |
+
selected_language = None
|
| 183 |
+
return "", 1.0, 1.0, 50, None, None, None, None, gr.Dropdown.update(visible=False), ""
|
| 184 |
|
| 185 |
with gr.Blocks() as demo:
|
| 186 |
+
gr.Markdown("# Analyse et génération de texte")
|
| 187 |
|
| 188 |
with gr.Accordion("Sélection du modèle"):
|
| 189 |
+
model_dropdown = gr.Dropdown(choices=list(models_and_languages.keys()), label="Choisissez un modèle")
|
| 190 |
load_button = gr.Button("Charger le modèle")
|
| 191 |
load_output = gr.Textbox(label="Statut du chargement")
|
| 192 |
+
language_dropdown = gr.Dropdown(label="Choisissez une langue", visible=False)
|
| 193 |
+
language_output = gr.Textbox(label="Langue sélectionnée")
|
| 194 |
|
| 195 |
with gr.Row():
|
| 196 |
temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
|
|
|
|
| 206 |
attention_plot = gr.Plot(label="Visualisation de l'attention")
|
| 207 |
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
|
| 208 |
|
| 209 |
+
generate_button = gr.Button("Générer le prochain mot")
|
| 210 |
generated_text = gr.Textbox(label="Texte généré")
|
| 211 |
|
| 212 |
reset_button = gr.Button("Réinitialiser")
|
| 213 |
|
| 214 |
+
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output, language_dropdown])
|
| 215 |
+
language_dropdown.change(set_language, inputs=[language_dropdown], outputs=[language_output])
|
| 216 |
analyze_button.click(analyze_next_token,
|
| 217 |
inputs=[input_text, temperature, top_p, top_k],
|
| 218 |
outputs=[next_token_probs, attention_plot, prob_plot])
|
|
|
|
| 220 |
inputs=[input_text, temperature, top_p, top_k],
|
| 221 |
outputs=[generated_text])
|
| 222 |
reset_button.click(reset,
|
| 223 |
+
outputs=[input_text, temperature, top_p, top_k, next_token_probs, attention_plot, prob_plot, generated_text, language_dropdown, language_output])
|
| 224 |
|
| 225 |
if __name__ == "__main__":
|
| 226 |
demo.launch()
|