Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import matplotlib.pyplot as plt
|
|
| 6 |
import numpy as np
|
| 7 |
from huggingface_hub import login
|
| 8 |
import os
|
|
|
|
| 9 |
login(token=os.environ["HF_TOKEN"])
|
| 10 |
|
| 11 |
# Liste des modèles
|
|
@@ -50,23 +51,52 @@ def generate_text(input_text, temperature, top_p, top_k):
|
|
| 50 |
# Obtenir les logits pour le dernier token généré
|
| 51 |
last_token_logits = model(outputs.sequences[:, -1:]).logits[:, -1, :]
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
# Extraire les attentions
|
| 54 |
attentions = outputs.attentions[-1][-1].mean(dim=0).numpy()
|
| 55 |
|
| 56 |
-
#
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
def reset():
|
| 72 |
return "", 1.0, 1.0, 50, None, None, None
|
|
@@ -91,15 +121,18 @@ with gr.Blocks() as demo:
|
|
| 91 |
|
| 92 |
with gr.Row():
|
| 93 |
attention_plot = gr.Plot(label="Visualisation de l'attention")
|
| 94 |
-
|
| 95 |
|
| 96 |
reset_button = gr.Button("Réinitialiser")
|
| 97 |
|
| 98 |
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
|
| 99 |
generate_button.click(generate_text,
|
| 100 |
inputs=[input_text, temperature, top_p, top_k],
|
| 101 |
-
outputs=[output_text, attention_plot,
|
| 102 |
reset_button.click(reset,
|
| 103 |
-
outputs=[input_text, temperature, top_p, top_k, output_text, attention_plot,
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
demo.launch()
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
from huggingface_hub import login
|
| 8 |
import os
|
| 9 |
+
|
| 10 |
login(token=os.environ["HF_TOKEN"])
|
| 11 |
|
| 12 |
# Liste des modèles
|
|
|
|
| 51 |
# Obtenir les logits pour le dernier token généré
|
| 52 |
last_token_logits = model(outputs.sequences[:, -1:]).logits[:, -1, :]
|
| 53 |
|
| 54 |
+
# Appliquer softmax pour obtenir les probabilités
|
| 55 |
+
probabilities = torch.nn.functional.softmax(last_token_logits[0], dim=-1)
|
| 56 |
+
|
| 57 |
+
# Obtenir les top 5 tokens les plus probables
|
| 58 |
+
top_k = 5
|
| 59 |
+
top_probs, top_indices = torch.topk(probabilities, top_k)
|
| 60 |
+
top_words = [tokenizer.decode([idx.item()]) for idx in top_indices]
|
| 61 |
+
|
| 62 |
+
# Préparer les données pour le graphique des probabilités
|
| 63 |
+
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
|
| 64 |
+
|
| 65 |
# Extraire les attentions
|
| 66 |
attentions = outputs.attentions[-1][-1].mean(dim=0).numpy()
|
| 67 |
|
| 68 |
+
# Préparer les données pour la carte d'attention
|
| 69 |
+
tokens = tokenizer.convert_ids_to_tokens(outputs.sequences[0])
|
| 70 |
+
attention_data = {
|
| 71 |
+
'attention': attentions.tolist(),
|
| 72 |
+
'tokens': tokens
|
| 73 |
+
}
|
| 74 |
|
| 75 |
+
return generated_text, attention_data, prob_data
|
| 76 |
+
|
| 77 |
+
def plot_attention(attention_data):
|
| 78 |
+
attention = np.array(attention_data['attention'])
|
| 79 |
+
tokens = attention_data['tokens']
|
| 80 |
|
| 81 |
+
plt.figure(figsize=(10, 10))
|
| 82 |
+
plt.imshow(attention, cmap='viridis')
|
| 83 |
+
plt.colorbar()
|
| 84 |
+
plt.xticks(range(len(tokens)), tokens, rotation=90)
|
| 85 |
+
plt.yticks(range(len(tokens)), tokens)
|
| 86 |
+
plt.title("Carte d'attention")
|
| 87 |
+
return plt
|
| 88 |
|
| 89 |
+
def plot_probabilities(prob_data):
|
| 90 |
+
words = list(prob_data.keys())
|
| 91 |
+
probs = list(prob_data.values())
|
| 92 |
+
|
| 93 |
+
plt.figure(figsize=(10, 5))
|
| 94 |
+
plt.bar(words, probs)
|
| 95 |
+
plt.title("Probabilités des tokens suivants les plus probables")
|
| 96 |
+
plt.xlabel("Tokens")
|
| 97 |
+
plt.ylabel("Probabilité")
|
| 98 |
+
plt.xticks(rotation=45)
|
| 99 |
+
return plt
|
| 100 |
|
| 101 |
def reset():
|
| 102 |
return "", 1.0, 1.0, 50, None, None, None
|
|
|
|
| 121 |
|
| 122 |
with gr.Row():
|
| 123 |
attention_plot = gr.Plot(label="Visualisation de l'attention")
|
| 124 |
+
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
|
| 125 |
|
| 126 |
reset_button = gr.Button("Réinitialiser")
|
| 127 |
|
| 128 |
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
|
| 129 |
generate_button.click(generate_text,
|
| 130 |
inputs=[input_text, temperature, top_p, top_k],
|
| 131 |
+
outputs=[output_text, attention_plot, prob_plot])
|
| 132 |
reset_button.click(reset,
|
| 133 |
+
outputs=[input_text, temperature, top_p, top_k, output_text, attention_plot, prob_plot])
|
| 134 |
+
|
| 135 |
+
attention_plot.change(plot_attention, inputs=[attention_plot], outputs=[attention_plot])
|
| 136 |
+
prob_plot.change(plot_probabilities, inputs=[prob_plot], outputs=[prob_plot])
|
| 137 |
|
| 138 |
demo.launch()
|