Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -32,48 +32,68 @@ tokenizer = None
|
|
| 32 |
|
| 33 |
def load_model(model_name):
|
| 34 |
global model, tokenizer
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
tokenizer.pad_token
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def generate_text(input_text, temperature, top_p, top_k):
|
| 42 |
global model, tokenizer
|
| 43 |
|
|
|
|
|
|
|
|
|
|
| 44 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
def plot_attention(attention, tokens):
|
| 79 |
fig, ax = plt.subplots(figsize=(10, 10))
|
|
@@ -101,6 +121,9 @@ def plot_probabilities(prob_data):
|
|
| 101 |
return fig
|
| 102 |
|
| 103 |
def reset():
|
|
|
|
|
|
|
|
|
|
| 104 |
return "", 1.0, 1.0, 50, None, None, None
|
| 105 |
|
| 106 |
with gr.Blocks() as demo:
|
|
|
|
| 32 |
|
| 33 |
def load_model(model_name):
|
| 34 |
global model, tokenizer
|
| 35 |
+
try:
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 37 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="eager")
|
| 38 |
+
if tokenizer.pad_token is None:
|
| 39 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 40 |
+
return f"Modèle {model_name} chargé avec succès."
|
| 41 |
+
except Exception as e:
|
| 42 |
+
return f"Erreur lors du chargement du modèle : {str(e)}"
|
| 43 |
|
| 44 |
def generate_text(input_text, temperature, top_p, top_k):
|
| 45 |
global model, tokenizer
|
| 46 |
|
| 47 |
+
if model is None or tokenizer is None:
|
| 48 |
+
return "Veuillez d'abord charger un modèle.", None, None
|
| 49 |
+
|
| 50 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
| 51 |
|
| 52 |
+
try:
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
outputs = model.generate(
|
| 55 |
+
**inputs,
|
| 56 |
+
max_new_tokens=50,
|
| 57 |
+
temperature=temperature,
|
| 58 |
+
top_p=top_p,
|
| 59 |
+
top_k=top_k,
|
| 60 |
+
output_attentions=True,
|
| 61 |
+
return_dict_in_generate=True,
|
| 62 |
+
output_scores=True
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
| 66 |
+
|
| 67 |
+
# Obtenir les logits pour le dernier token généré
|
| 68 |
+
if outputs.scores:
|
| 69 |
+
last_token_logits = outputs.scores[-1][0]
|
| 70 |
+
|
| 71 |
+
# Appliquer softmax pour obtenir les probabilités
|
| 72 |
+
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
|
| 73 |
+
|
| 74 |
+
# Obtenir les top 5 tokens les plus probables
|
| 75 |
+
top_k = 5
|
| 76 |
+
top_probs, top_indices = torch.topk(probabilities, top_k)
|
| 77 |
+
top_words = [tokenizer.decode([idx.item()]) for idx in top_indices]
|
| 78 |
+
|
| 79 |
+
# Préparer les données pour le graphique des probabilités
|
| 80 |
+
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
|
| 81 |
+
|
| 82 |
+
# Extraire les attentions (moyenne sur toutes les couches et têtes d'attention)
|
| 83 |
+
if outputs.attentions:
|
| 84 |
+
attentions = torch.mean(torch.stack(outputs.attentions), dim=(0, 1)).cpu().numpy()
|
| 85 |
+
attention_plot = plot_attention(attentions, tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]))
|
| 86 |
+
else:
|
| 87 |
+
attention_plot = None
|
| 88 |
+
|
| 89 |
+
prob_plot = plot_probabilities(prob_data)
|
| 90 |
+
else:
|
| 91 |
+
attention_plot = None
|
| 92 |
+
prob_plot = None
|
| 93 |
+
|
| 94 |
+
return generated_text, attention_plot, prob_plot
|
| 95 |
+
except Exception as e:
|
| 96 |
+
return f"Erreur lors de la génération : {str(e)}", None, None
|
| 97 |
|
| 98 |
def plot_attention(attention, tokens):
|
| 99 |
fig, ax = plt.subplots(figsize=(10, 10))
|
|
|
|
| 121 |
return fig
|
| 122 |
|
| 123 |
def reset():
|
| 124 |
+
global model, tokenizer
|
| 125 |
+
model = None
|
| 126 |
+
tokenizer = None
|
| 127 |
return "", 1.0, 1.0, 50, None, None, None
|
| 128 |
|
| 129 |
with gr.Blocks() as demo:
|