Spaces:
Running
Running
| from typing import Any, Dict, List, Optional, Tuple | |
| import torch | |
| import torch.nn.functional as F | |
| from einops import rearrange | |
| from torch import Tensor, nn | |
| from torch.nn.common_types import _size_2_t | |
| from yolo.utils.logger import logger | |
| from yolo.utils.module_utils import auto_pad, create_activation_function, round_up | |
| # ----------- Basic Class ----------- # | |
| class Conv(nn.Module): | |
| """A basic convolutional block that includes convolution, batch normalization, and activation.""" | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: _size_2_t, | |
| *, | |
| activation: Optional[str] = "SiLU", | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs)) | |
| self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, bias=False, **kwargs) | |
| self.bn = nn.BatchNorm2d(out_channels, eps=1e-3, momentum=3e-2) | |
| self.act = create_activation_function(activation) | |
| def forward(self, x: Tensor) -> Tensor: | |
| return self.act(self.bn(self.conv(x))) | |
| class Pool(nn.Module): | |
| """A generic pooling block supporting 'max' and 'avg' pooling methods.""" | |
| def __init__(self, method: str = "max", kernel_size: _size_2_t = 2, **kwargs): | |
| super().__init__() | |
| kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs)) | |
| pool_classes = {"max": nn.MaxPool2d, "avg": nn.AvgPool2d} | |
| self.pool = pool_classes[method.lower()](kernel_size=kernel_size, **kwargs) | |
| def forward(self, x: Tensor) -> Tensor: | |
| return self.pool(x) | |
| class Concat(nn.Module): | |
| def __init__(self, dim=1): | |
| super(Concat, self).__init__() | |
| self.dim = dim | |
| def forward(self, x): | |
| return torch.cat(x, self.dim) | |
| # ----------- Detection Class ----------- # | |
| class Detection(nn.Module): | |
| """A single YOLO Detection head for detection models""" | |
| def __init__(self, in_channels: Tuple[int], num_classes: int, *, reg_max: int = 16, use_group: bool = True): | |
| super().__init__() | |
| groups = 4 if use_group else 1 | |
| anchor_channels = 4 * reg_max | |
| first_neck, in_channels = in_channels | |
| anchor_neck = max(round_up(first_neck // 4, groups), anchor_channels, reg_max) | |
| class_neck = max(first_neck, min(num_classes * 2, 128)) | |
| self.anchor_conv = nn.Sequential( | |
| Conv(in_channels, anchor_neck, 3), | |
| Conv(anchor_neck, anchor_neck, 3, groups=groups), | |
| nn.Conv2d(anchor_neck, anchor_channels, 1, groups=groups), | |
| ) | |
| self.class_conv = nn.Sequential( | |
| Conv(in_channels, class_neck, 3), Conv(class_neck, class_neck, 3), nn.Conv2d(class_neck, num_classes, 1) | |
| ) | |
| self.anc2vec = Anchor2Vec(reg_max=reg_max) | |
| self.anchor_conv[-1].bias.data.fill_(1.0) | |
| self.class_conv[-1].bias.data.fill_(-10) # TODO: math.log(5 * 4 ** idx / 80 ** 3) | |
| def forward(self, x: Tensor) -> Tuple[Tensor]: | |
| anchor_x = self.anchor_conv(x) | |
| class_x = self.class_conv(x) | |
| anchor_x, vector_x = self.anc2vec(anchor_x) | |
| return class_x, anchor_x, vector_x | |
| class IDetection(nn.Module): | |
| def __init__(self, in_channels: Tuple[int], num_classes: int, *args, anchor_num: int = 3, **kwargs): | |
| super().__init__() | |
| if isinstance(in_channels, tuple): | |
| in_channels = in_channels[1] | |
| out_channel = num_classes + 5 | |
| out_channels = out_channel * anchor_num | |
| self.head_conv = nn.Conv2d(in_channels, out_channels, 1) | |
| self.implicit_a = ImplicitA(in_channels) | |
| self.implicit_m = ImplicitM(out_channels) | |
| def forward(self, x): | |
| x = self.implicit_a(x) | |
| x = self.head_conv(x) | |
| x = self.implicit_m(x) | |
| return x | |
| class MultiheadDetection(nn.Module): | |
| """Mutlihead Detection module for Dual detect or Triple detect""" | |
| def __init__(self, in_channels: List[int], num_classes: int, **head_kwargs): | |
| super().__init__() | |
| DetectionHead = Detection | |
| if head_kwargs.pop("version", None) == "v7": | |
| DetectionHead = IDetection | |
| self.heads = nn.ModuleList( | |
| [DetectionHead((in_channels[0], in_channel), num_classes, **head_kwargs) for in_channel in in_channels] | |
| ) | |
| def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]: | |
| return [head(x) for x, head in zip(x_list, self.heads)] | |
| # ----------- Segmentation Class ----------- # | |
| class Segmentation(nn.Module): | |
| def __init__(self, in_channels: Tuple[int], num_maskes: int): | |
| super().__init__() | |
| first_neck, in_channels = in_channels | |
| mask_neck = max(first_neck // 4, num_maskes) | |
| self.mask_conv = nn.Sequential( | |
| Conv(in_channels, mask_neck, 3), Conv(mask_neck, mask_neck, 3), nn.Conv2d(mask_neck, num_maskes, 1) | |
| ) | |
| def forward(self, x: Tensor) -> Tuple[Tensor]: | |
| x = self.mask_conv(x) | |
| return x | |
| class MultiheadSegmentation(nn.Module): | |
| """Mutlihead Segmentation module for Dual segment or Triple segment""" | |
| def __init__(self, in_channels: List[int], num_classes: int, num_maskes: int, **head_kwargs): | |
| super().__init__() | |
| mask_channels, proto_channels = in_channels[:-1], in_channels[-1] | |
| self.detect = MultiheadDetection(mask_channels, num_classes, **head_kwargs) | |
| self.heads = nn.ModuleList( | |
| [Segmentation((in_channels[0], in_channel), num_maskes) for in_channel in mask_channels] | |
| ) | |
| self.heads.append(Conv(proto_channels, num_maskes, 1)) | |
| def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]: | |
| return [head(x) for x, head in zip(x_list, self.heads)] | |
| class Anchor2Vec(nn.Module): | |
| def __init__(self, reg_max: int = 16) -> None: | |
| super().__init__() | |
| reverse_reg = torch.arange(reg_max, dtype=torch.float32).view(1, reg_max, 1, 1, 1) | |
| self.anc2vec = nn.Conv3d(in_channels=reg_max, out_channels=1, kernel_size=1, bias=False) | |
| self.anc2vec.weight = nn.Parameter(reverse_reg, requires_grad=False) | |
| def forward(self, anchor_x: Tensor) -> Tensor: | |
| anchor_x = rearrange(anchor_x, "B (P R) h w -> B R P h w", P=4) | |
| vector_x = anchor_x.softmax(dim=1) | |
| vector_x = self.anc2vec(vector_x)[:, 0] | |
| return anchor_x, vector_x | |
| # ----------- Classification Class ----------- # | |
| class Classification(nn.Module): | |
| def __init__(self, in_channel: int, num_classes: int, *, neck_channels=1024, **head_args): | |
| super().__init__() | |
| self.conv = Conv(in_channel, neck_channels, 1) | |
| self.pool = nn.AdaptiveAvgPool2d(1) | |
| self.head = nn.Linear(neck_channels, num_classes) | |
| def forward(self, x: Tensor) -> Tuple[Tensor]: | |
| x = self.pool(self.conv(x)) | |
| x = self.head(x.flatten(start_dim=1)) | |
| return x | |
| # ----------- Backbone Class ----------- # | |
| class RepConv(nn.Module): | |
| """A convolutional block that combines two convolution layers (kernel and point-wise).""" | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: _size_2_t = 3, | |
| *, | |
| activation: Optional[str] = "SiLU", | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.act = create_activation_function(activation) | |
| self.conv1 = Conv(in_channels, out_channels, kernel_size, activation=False, **kwargs) | |
| self.conv2 = Conv(in_channels, out_channels, 1, activation=False, **kwargs) | |
| def forward(self, x: Tensor) -> Tensor: | |
| return self.act(self.conv1(x) + self.conv2(x)) | |
| class Bottleneck(nn.Module): | |
| """A bottleneck block with optional residual connections.""" | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| *, | |
| kernel_size: Tuple[int, int] = (3, 3), | |
| residual: bool = True, | |
| expand: float = 1.0, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| neck_channels = int(out_channels * expand) | |
| self.conv1 = RepConv(in_channels, neck_channels, kernel_size[0], **kwargs) | |
| self.conv2 = Conv(neck_channels, out_channels, kernel_size[1], **kwargs) | |
| self.residual = residual | |
| if residual and (in_channels != out_channels): | |
| self.residual = False | |
| logger.warning( | |
| "Residual connection disabled: in_channels ({}) != out_channels ({})", in_channels, out_channels | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| y = self.conv2(self.conv1(x)) | |
| return x + y if self.residual else y | |
| class RepNCSP(nn.Module): | |
| """RepNCSP block with convolutions, split, and bottleneck processing.""" | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: int = 1, | |
| *, | |
| csp_expand: float = 0.5, | |
| repeat_num: int = 1, | |
| neck_args: Dict[str, Any] = {}, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| neck_channels = int(out_channels * csp_expand) | |
| self.conv1 = Conv(in_channels, neck_channels, kernel_size, **kwargs) | |
| self.conv2 = Conv(in_channels, neck_channels, kernel_size, **kwargs) | |
| self.conv3 = Conv(2 * neck_channels, out_channels, kernel_size, **kwargs) | |
| self.bottleneck = nn.Sequential( | |
| *[Bottleneck(neck_channels, neck_channels, **neck_args) for _ in range(repeat_num)] | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x1 = self.bottleneck(self.conv1(x)) | |
| x2 = self.conv2(x) | |
| return self.conv3(torch.cat((x1, x2), dim=1)) | |
| class ELAN(nn.Module): | |
| """ELAN structure.""" | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| part_channels: int, | |
| *, | |
| process_channels: Optional[int] = None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| if process_channels is None: | |
| process_channels = part_channels // 2 | |
| self.conv1 = Conv(in_channels, part_channels, 1, **kwargs) | |
| self.conv2 = Conv(part_channels // 2, process_channels, 3, padding=1, **kwargs) | |
| self.conv3 = Conv(process_channels, process_channels, 3, padding=1, **kwargs) | |
| self.conv4 = Conv(part_channels + 2 * process_channels, out_channels, 1, **kwargs) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x1, x2 = self.conv1(x).chunk(2, 1) | |
| x3 = self.conv2(x2) | |
| x4 = self.conv3(x3) | |
| x5 = self.conv4(torch.cat([x1, x2, x3, x4], dim=1)) | |
| return x5 | |
| class RepNCSPELAN(nn.Module): | |
| """RepNCSPELAN block combining RepNCSP blocks with ELAN structure.""" | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| part_channels: int, | |
| *, | |
| process_channels: Optional[int] = None, | |
| csp_args: Dict[str, Any] = {}, | |
| csp_neck_args: Dict[str, Any] = {}, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| if process_channels is None: | |
| process_channels = part_channels // 2 | |
| self.conv1 = Conv(in_channels, part_channels, 1, **kwargs) | |
| self.conv2 = nn.Sequential( | |
| RepNCSP(part_channels // 2, process_channels, neck_args=csp_neck_args, **csp_args), | |
| Conv(process_channels, process_channels, 3, padding=1, **kwargs), | |
| ) | |
| self.conv3 = nn.Sequential( | |
| RepNCSP(process_channels, process_channels, neck_args=csp_neck_args, **csp_args), | |
| Conv(process_channels, process_channels, 3, padding=1, **kwargs), | |
| ) | |
| self.conv4 = Conv(part_channels + 2 * process_channels, out_channels, 1, **kwargs) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x1, x2 = self.conv1(x).chunk(2, 1) | |
| x3 = self.conv2(x2) | |
| x4 = self.conv3(x3) | |
| x5 = self.conv4(torch.cat([x1, x2, x3, x4], dim=1)) | |
| return x5 | |
| class AConv(nn.Module): | |
| """Downsampling module combining average and max pooling with convolution for feature reduction.""" | |
| def __init__(self, in_channels: int, out_channels: int): | |
| super().__init__() | |
| mid_layer = {"kernel_size": 3, "stride": 2} | |
| self.avg_pool = Pool("avg", kernel_size=2, stride=1) | |
| self.conv = Conv(in_channels, out_channels, **mid_layer) | |
| def forward(self, x: Tensor) -> Tensor: | |
| x = self.avg_pool(x) | |
| x = self.conv(x) | |
| return x | |
| class ADown(nn.Module): | |
| """Downsampling module combining average and max pooling with convolution for feature reduction.""" | |
| def __init__(self, in_channels: int, out_channels: int): | |
| super().__init__() | |
| half_in_channels = in_channels // 2 | |
| half_out_channels = out_channels // 2 | |
| mid_layer = {"kernel_size": 3, "stride": 2} | |
| self.avg_pool = Pool("avg", kernel_size=2, stride=1) | |
| self.conv1 = Conv(half_in_channels, half_out_channels, **mid_layer) | |
| self.max_pool = Pool("max", **mid_layer) | |
| self.conv2 = Conv(half_in_channels, half_out_channels, kernel_size=1) | |
| def forward(self, x: Tensor) -> Tensor: | |
| x = self.avg_pool(x) | |
| x1, x2 = x.chunk(2, dim=1) | |
| x1 = self.conv1(x1) | |
| x2 = self.max_pool(x2) | |
| x2 = self.conv2(x2) | |
| return torch.cat((x1, x2), dim=1) | |
| class CBLinear(nn.Module): | |
| """Convolutional block that outputs multiple feature maps split along the channel dimension.""" | |
| def __init__(self, in_channels: int, out_channels: List[int], kernel_size: int = 1, **kwargs): | |
| super(CBLinear, self).__init__() | |
| kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs)) | |
| self.conv = nn.Conv2d(in_channels, sum(out_channels), kernel_size, **kwargs) | |
| self.out_channels = list(out_channels) | |
| def forward(self, x: Tensor) -> Tuple[Tensor]: | |
| x = self.conv(x) | |
| return x.split(self.out_channels, dim=1) | |
| class SPPCSPConv(nn.Module): | |
| # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks | |
| def __init__(self, in_channels: int, out_channels: int, expand: float = 0.5, kernel_sizes: Tuple[int] = (5, 9, 13)): | |
| super().__init__() | |
| neck_channels = int(2 * out_channels * expand) | |
| self.pre_conv = nn.Sequential( | |
| Conv(in_channels, neck_channels, 1), | |
| Conv(neck_channels, neck_channels, 3), | |
| Conv(neck_channels, neck_channels, 1), | |
| ) | |
| self.short_conv = Conv(in_channels, neck_channels, 1) | |
| self.pools = nn.ModuleList([Pool(kernel_size=kernel_size, stride=1) for kernel_size in kernel_sizes]) | |
| self.post_conv = nn.Sequential(Conv(4 * neck_channels, neck_channels, 1), Conv(neck_channels, neck_channels, 3)) | |
| self.merge_conv = Conv(2 * neck_channels, out_channels, 1) | |
| def forward(self, x): | |
| features = [self.pre_conv(x)] | |
| for pool in self.pools: | |
| features.append(pool(features[-1])) | |
| features = torch.cat(features, dim=1) | |
| y1 = self.post_conv(features) | |
| y2 = self.short_conv(x) | |
| y = torch.cat((y1, y2), dim=1) | |
| return self.merge_conv(y) | |
| class SPPELAN(nn.Module): | |
| """SPPELAN module comprising multiple pooling and convolution layers.""" | |
| def __init__(self, in_channels: int, out_channels: int, neck_channels: Optional[int] = None): | |
| super(SPPELAN, self).__init__() | |
| neck_channels = neck_channels or out_channels // 2 | |
| self.conv1 = Conv(in_channels, neck_channels, kernel_size=1) | |
| self.pools = nn.ModuleList([Pool("max", 5, stride=1) for _ in range(3)]) | |
| self.conv5 = Conv(4 * neck_channels, out_channels, kernel_size=1) | |
| def forward(self, x: Tensor) -> Tensor: | |
| features = [self.conv1(x)] | |
| for pool in self.pools: | |
| features.append(pool(features[-1])) | |
| return self.conv5(torch.cat(features, dim=1)) | |
| class UpSample(nn.Module): | |
| def __init__(self, **kwargs): | |
| super().__init__() | |
| self.UpSample = nn.Upsample(**kwargs) | |
| def forward(self, x): | |
| return self.UpSample(x) | |
| class CBFuse(nn.Module): | |
| def __init__(self, index: List[int], mode: str = "nearest"): | |
| super().__init__() | |
| self.idx = index | |
| self.mode = mode | |
| def forward(self, x_list: List[torch.Tensor]) -> List[Tensor]: | |
| target = x_list[-1] | |
| target_size = target.shape[2:] # Batch, Channel, H, W | |
| res = [F.interpolate(x[pick_id], size=target_size, mode=self.mode) for pick_id, x in zip(self.idx, x_list)] | |
| out = torch.stack(res + [target]).sum(dim=0) | |
| return out | |
| class ImplicitA(nn.Module): | |
| """ | |
| Implement YOLOR - implicit knowledge(Add), paper: https://arxiv.org/abs/2105.04206 | |
| """ | |
| def __init__(self, channel: int, mean: float = 0.0, std: float = 0.02): | |
| super().__init__() | |
| self.channel = channel | |
| self.mean = mean | |
| self.std = std | |
| self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1)) | |
| nn.init.normal_(self.implicit, mean=self.mean, std=self.std) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| return self.implicit + x | |
| class ImplicitM(nn.Module): | |
| """ | |
| Implement YOLOR - implicit knowledge(multiply), paper: https://arxiv.org/abs/2105.04206 | |
| """ | |
| def __init__(self, channel: int, mean: float = 1.0, std: float = 0.02): | |
| super().__init__() | |
| self.channel = channel | |
| self.mean = mean | |
| self.std = std | |
| self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1)) | |
| nn.init.normal_(self.implicit, mean=self.mean, std=self.std) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| return self.implicit * x | |