Spaces:
Sleeping
Sleeping
🎨 [Add] Visualization of YOLO model
Browse files- examples/example_train.py +2 -0
- yolo/utils/drawer.py +54 -0
examples/example_train.py
CHANGED
|
@@ -13,6 +13,7 @@ from yolo.model.yolo import get_model
|
|
| 13 |
from yolo.tools.log_helper import custom_logger
|
| 14 |
from yolo.tools.trainer import Trainer
|
| 15 |
from yolo.utils.dataloader import get_dataloader
|
|
|
|
| 16 |
from yolo.utils.get_dataset import prepare_dataset
|
| 17 |
|
| 18 |
|
|
@@ -23,6 +24,7 @@ def main(cfg: Config):
|
|
| 23 |
|
| 24 |
dataloader = get_dataloader(cfg)
|
| 25 |
model = get_model(cfg.model)
|
|
|
|
| 26 |
# TODO: get_device or rank, for DDP mode
|
| 27 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
|
|
|
|
| 13 |
from yolo.tools.log_helper import custom_logger
|
| 14 |
from yolo.tools.trainer import Trainer
|
| 15 |
from yolo.utils.dataloader import get_dataloader
|
| 16 |
+
from yolo.utils.drawer import draw_model
|
| 17 |
from yolo.utils.get_dataset import prepare_dataset
|
| 18 |
|
| 19 |
|
|
|
|
| 24 |
|
| 25 |
dataloader = get_dataloader(cfg)
|
| 26 |
model = get_model(cfg.model)
|
| 27 |
+
draw_model(model=model)
|
| 28 |
# TODO: get_device or rank, for DDP mode
|
| 29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 30 |
|
yolo/utils/drawer.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
from typing import List, Union
|
| 2 |
|
|
|
|
| 3 |
import torch
|
| 4 |
from loguru import logger
|
| 5 |
from PIL import Image, ImageDraw, ImageFont
|
|
@@ -39,3 +40,56 @@ def draw_bboxes(img: Union[Image.Image, torch.Tensor], bboxes: List[List[Union[i
|
|
| 39 |
|
| 40 |
img.save("visualize.jpg") # Save the image with annotations
|
| 41 |
logger.info("Saved visualize image at visualize.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import List, Union
|
| 2 |
|
| 3 |
+
import numpy as np
|
| 4 |
import torch
|
| 5 |
from loguru import logger
|
| 6 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
| 40 |
|
| 41 |
img.save("visualize.jpg") # Save the image with annotations
|
| 42 |
logger.info("Saved visualize image at visualize.png")
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def draw_model(*, model_cfg=None, model=None):
|
| 46 |
+
from graphviz import Digraph
|
| 47 |
+
|
| 48 |
+
if model_cfg:
|
| 49 |
+
from yolo.model.yolo import get_model
|
| 50 |
+
|
| 51 |
+
model = get_model(model_cfg)
|
| 52 |
+
elif model is None:
|
| 53 |
+
raise ValueError("Drawing Object is None")
|
| 54 |
+
|
| 55 |
+
model_size = len(model.model)
|
| 56 |
+
model_mat = np.zeros((model_size, model_size), dtype=bool)
|
| 57 |
+
|
| 58 |
+
layer_name = []
|
| 59 |
+
for idx, layer in enumerate(model.model):
|
| 60 |
+
layer_name.append(str(type(layer)).split(".")[-1][:-2])
|
| 61 |
+
if isinstance(layer.source, int):
|
| 62 |
+
source = layer.source + (layer.source < 0) * idx
|
| 63 |
+
model_mat[source, idx] = True
|
| 64 |
+
else:
|
| 65 |
+
for source in layer.source:
|
| 66 |
+
source = source + (source < 0) * idx
|
| 67 |
+
model_mat[source, idx] = True
|
| 68 |
+
|
| 69 |
+
pattern_list = [("ELAN", 8, 3), ("ELAN", 8, 55), ("MP", 5, 11)]
|
| 70 |
+
pattern_mat = []
|
| 71 |
+
for name, size, position in pattern_list:
|
| 72 |
+
pattern_mat.append(
|
| 73 |
+
(name, size, model_mat[position : position + size, position + 1 : position + 1 + size].copy())
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
dot = Digraph(comment="Model Flow Chart")
|
| 77 |
+
node_idx = 0
|
| 78 |
+
|
| 79 |
+
for idx in range(model_size):
|
| 80 |
+
for jdx in range(idx, model_size - 7):
|
| 81 |
+
for name, size, pattern in pattern_mat:
|
| 82 |
+
if (model_mat[idx : idx + size, jdx : jdx + size] == pattern).all():
|
| 83 |
+
layer_name[idx] = name
|
| 84 |
+
model_mat[idx : idx + size, jdx : jdx + size] = False
|
| 85 |
+
model_mat[idx, idx + size] = True
|
| 86 |
+
|
| 87 |
+
if model_mat[idx].any():
|
| 88 |
+
dot.node(str(idx), f"{node_idx}-{layer_name[idx]}")
|
| 89 |
+
node_idx += 1
|
| 90 |
+
for jdx in range(idx, model_size):
|
| 91 |
+
if model_mat[idx, jdx] == 1:
|
| 92 |
+
dot.edge(str(idx), str(jdx))
|
| 93 |
+
|
| 94 |
+
dot.render("Model-arch", format="png", cleanup=True)
|
| 95 |
+
logger.info("🎨 Drawing Model Architecture at Model-arch.png")
|