Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import re | |
| import subprocess | |
| import sys | |
| import cpuinfo | |
| import gradio as gr | |
| import torch | |
| pretrained_sovits_name = { | |
| "v2Pro": "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth", | |
| "v2ProPlus": "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth", | |
| } | |
| pretrained_gpt_name = { | |
| "v3": "GPT_SoVITS/pretrained_models/s1v3.ckpt", | |
| "v4": "GPT_SoVITS/pretrained_models/s1v3.ckpt", | |
| "v2Pro": "GPT_SoVITS/pretrained_models/s1v3.ckpt", | |
| "v2ProPlus": "GPT_SoVITS/pretrained_models/s1v3.ckpt", | |
| } | |
| name2sovits_path = { | |
| # "不训练直接推v2Pro底模!": "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth", | |
| "不训练直接推v2ProPlus底模!": "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth", | |
| } | |
| name2gpt_path = { | |
| "不训练直接推v3底模!": "GPT_SoVITS/pretrained_models/s1v3.ckpt", | |
| } | |
| SoVITS_weight_root = [ | |
| "SoVITS_weights", | |
| "SoVITS_weights_v2", | |
| "SoVITS_weights_v3", | |
| "SoVITS_weights_v4", | |
| "SoVITS_weights_v2Pro", | |
| "SoVITS_weights_v2ProPlus", | |
| ] | |
| GPT_weight_root = [ | |
| "GPT_weights", | |
| "GPT_weights_v2", | |
| "GPT_weights_v3", | |
| "GPT_weights_v4", | |
| "GPT_weights_v2Pro", | |
| "GPT_weights_v2ProPlus", | |
| ] | |
| SoVITS_weight_version2root = { | |
| "v1": "SoVITS_weights", | |
| "v2": "SoVITS_weights_v2", | |
| "v3": "SoVITS_weights_v3", | |
| "v4": "SoVITS_weights_v4", | |
| "v2Pro": "SoVITS_weights_v2Pro", | |
| "v2ProPlus": "SoVITS_weights_v2ProPlus", | |
| } | |
| GPT_weight_version2root = { | |
| "v1": "GPT_weights", | |
| "v2": "GPT_weights_v2", | |
| "v3": "GPT_weights_v3", | |
| "v4": "GPT_weights_v4", | |
| "v2Pro": "GPT_weights_v2Pro", | |
| "v2ProPlus": "GPT_weights_v2ProPlus", | |
| } | |
| def custom_sort_key(s): | |
| # 使用正则表达式提取字符串中的数字部分和非数字部分 | |
| parts = re.split(r"(\d+)", s[-1]) | |
| # 将数字部分转换为整数,非数字部分保持不变 | |
| parts = [int(part) if part.isdigit() else part for part in parts] | |
| return parts | |
| def get_weights_names(i18n): | |
| SoVITS_names: list[tuple[str, str]] = [] | |
| for key, value in name2sovits_path.items(): | |
| if os.path.exists(value): | |
| SoVITS_names.append((i18n(key), value)) | |
| for path in SoVITS_weight_root: | |
| if not os.path.exists(path): | |
| continue | |
| for name in os.listdir(path): | |
| if name.endswith(".pth"): | |
| SoVITS_names.append((f"{path}/{name}", f"{path}/{name}")) | |
| GPT_names: list[tuple[str, str]] = [] | |
| for key, value in name2gpt_path.items(): | |
| if os.path.exists(value): | |
| GPT_names.append((i18n(key), value)) | |
| for path in GPT_weight_root: | |
| if not os.path.exists(path): | |
| continue | |
| for name in os.listdir(path): | |
| if name.endswith(".ckpt"): | |
| GPT_names.append((f"{path}/{name}", f"{path}/{name}")) | |
| SoVITS_names = sorted(SoVITS_names, key=custom_sort_key) | |
| GPT_names = sorted(GPT_names, key=custom_sort_key) | |
| return SoVITS_names, GPT_names | |
| def change_choices(i18n): | |
| SoVITS_names, GPT_names = get_weights_names(i18n) | |
| return gr.update(choices=SoVITS_names), gr.update(choices=GPT_names) | |
| # 推理用的指定模型 | |
| sovits_path = "" | |
| gpt_path = "" | |
| is_half_str = os.environ.get("is_half", "True") | |
| is_half = True if is_half_str.lower() == "true" else False | |
| is_share_str = os.environ.get("is_share", "False") | |
| is_share = True if is_share_str.lower() == "true" else False | |
| cnhubert_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base" | |
| bert_path = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" | |
| pretrained_sovits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth" | |
| pretrained_gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" | |
| exp_root = "logs" | |
| python_exec = sys.executable or "python" | |
| webui_port_main = 9874 | |
| webui_port_uvr5 = 9873 | |
| webui_port_infer_tts = 9872 | |
| webui_port_subfix = 9871 | |
| api_port = 9880 | |
| def get_apple_silicon_name(): | |
| result = subprocess.run(["sysctl", "-n", "machdep.cpu.brand_string"], capture_output=True, text=True) | |
| return result.stdout.strip() | |
| def get_dtype(idx: int): | |
| if not torch.cuda.is_available(): | |
| return torch.float32 | |
| capability = torch.cuda.get_device_capability(idx) | |
| major, minor = capability | |
| sm_version = major + minor / 10.0 | |
| if sm_version > 6.1: | |
| return torch.float16 | |
| return torch.float32 | |
| # Thanks to the contribution of @Karasukaigan and @XXXXRT666 | |
| def get_device_dtype_sm(idx: int) -> tuple[torch.device, torch.dtype, float, float]: | |
| cpu = torch.device("cpu:0") | |
| cuda = torch.device(f"cuda:{idx}") | |
| if torch.mps.is_available(): | |
| return ( | |
| torch.device("mps:0"), | |
| torch.float16, | |
| 100, | |
| os.sysconf("SC_PHYS_PAGES") * os.sysconf("SC_PAGE_SIZE") / (1024**3), | |
| ) | |
| if not torch.cuda.is_available(): | |
| return cpu, torch.float32, 0.0, 0.0 | |
| device_idx = idx | |
| capability = torch.cuda.get_device_capability(device_idx) | |
| name = torch.cuda.get_device_name(device_idx) | |
| mem_bytes = torch.cuda.get_device_properties(device_idx).total_memory | |
| mem_gb = mem_bytes / (1024**3) + 0.4 | |
| major, minor = capability | |
| sm_version = major + minor / 10.0 | |
| is_16_series = bool(re.search(r"16\d{2}", name)) and sm_version == 7.5 | |
| if mem_gb < 4 or sm_version < 5.3: | |
| return cpu, torch.float32, 0.0, 0.0 | |
| if sm_version == 6.1 or is_16_series is True: | |
| return cuda, torch.float32, sm_version, mem_gb | |
| if sm_version > 6.1: | |
| return cuda, torch.float16, sm_version, mem_gb | |
| return cpu, torch.float32, 0.0, 0.0 | |
| IS_GPU = True | |
| GPU_INFOS: list[str] = [] | |
| GPU_INDEX: set[int] = set() | |
| GPU_COUNT = torch.cuda.device_count() | |
| CPU_INFO: str = f"0\t{cpuinfo.get_cpu_info()['brand_raw']}" | |
| tmp: list[tuple[torch.device, torch.dtype, float, float]] = [] | |
| memset: set[float] = set() | |
| for i in range(max(GPU_COUNT, 1)): | |
| tmp.append(get_device_dtype_sm(i)) | |
| for j in tmp: | |
| device = j[0] | |
| memset.add(j[3]) | |
| if device.type == "cuda": | |
| GPU_INFOS.append(f"{device.index}\t{torch.cuda.get_device_name(device.index)}") | |
| GPU_INDEX.add(device.index) | |
| elif device.type == "mps": | |
| GPU_INFOS.append(f"0\t{get_apple_silicon_name()}") | |
| GPU_INDEX.add(0) | |
| if not GPU_INFOS: | |
| IS_GPU = False | |
| GPU_INFOS.append(CPU_INFO) | |
| GPU_INDEX.add(0) | |
| if torch.mps.is_available(): | |
| infer_device = torch.device("mps:0") | |
| else: | |
| infer_device = max(tmp, key=lambda x: (x[2], x[3]))[0] | |
| is_half = any(dtype == torch.float16 for _, dtype, _, _ in tmp) | |
| class Config: | |
| def __init__(self): | |
| self.sovits_path = sovits_path | |
| self.gpt_path = gpt_path | |
| self.is_half = is_half | |
| self.cnhubert_path = cnhubert_path | |
| self.bert_path = bert_path | |
| self.pretrained_sovits_path = pretrained_sovits_path | |
| self.pretrained_gpt_path = pretrained_gpt_path | |
| self.exp_root = exp_root | |
| self.python_exec = python_exec | |
| self.infer_device = infer_device | |
| self.webui_port_main = webui_port_main | |
| self.webui_port_uvr5 = webui_port_uvr5 | |
| self.webui_port_infer_tts = webui_port_infer_tts | |
| self.webui_port_subfix = webui_port_subfix | |
| self.api_port = api_port | |
| def get_implement(device: torch.device): | |
| if torch.cuda.is_available(): | |
| idx = device.index | |
| capability = torch.cuda.get_device_capability(idx) | |
| major, minor = capability | |
| sm_version = major + minor / 10.0 | |
| if sm_version >= 7.5: | |
| return "flash_attn" | |
| else: | |
| if sys.platform == "linux": | |
| return "sage_attn" | |
| else: | |
| return "naive" | |
| elif torch.mps.is_available(): | |
| return "mlx" | |
| else: | |
| return "naive" | |