Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import re | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| from nltk.corpus import stopwords | |
| from spaces import GPU # Required for ZeroGPU Spaces | |
| import nltk | |
| # Download stopwords if not already available | |
| nltk.download("stopwords") | |
| nltk.download('punkt') | |
| stop_words = set(stopwords.words("english")) | |
| # Define additional words (prepositions, conjunctions, articles) to remove | |
| extra_stopwords = set([ | |
| 'a', 'an', 'the', 'and', 'but', 'or', 'for', 'nor', 'so', 'yet', 'at', 'in', 'on', 'with', 'about', 'as', 'by', 'to', 'from', 'of', 'over', 'under', 'during', 'before', 'after', 'between', 'into', 'through', 'among', 'above', 'below' | |
| ]) | |
| # Combine NLTK stopwords with extra stopwords | |
| stop_words = set(stopwords.words("english")).union(extra_stopwords) | |
| # Model list | |
| model_choices = { | |
| "Xindus Summarizer" : "madankn/xindus_t5base", | |
| "T5 Base (t5-base)": "t5-base", | |
| "DistilBART CNN (sshleifer/distilbart-cnn-12-6)": "sshleifer/distilbart-cnn-12-6", | |
| "DistilBART XSum (sshleifer/distilbart-xsum-12-6)": "sshleifer/distilbart-xsum-12-6", | |
| "T5 Small (t5-small)": "t5-small", | |
| "Flan-T5 Base (google/flan-t5-base)": "google/flan-t5-base", | |
| "BART Large CNN (facebook/bart-large-cnn)": "facebook/bart-large-cnn", | |
| "PEGASUS XSum (google/pegasus-xsum)": "google/pegasus-xsum", | |
| "BART Large XSum (facebook/bart-large-xsum)": "facebook/bart-large-xsum" | |
| } | |
| model_cache = {} | |
| def emphasize_keywords(text, keywords, repeat=3): | |
| for kw in keywords: | |
| pattern = r'\b' + re.escape(kw) + r'\b' | |
| text = re.sub(pattern, (kw + ' ') * repeat, text, flags=re.IGNORECASE) | |
| return text | |
| # Clean text: remove special characters and stop words | |
| def clean_text(input_text): | |
| cleaned = re.sub(r"[^A-Za-z0-9\s]", " ", input_text) | |
| cleaned = re.sub(r"\b[A-Za-z]{2,}[0-9]{3,}\b", "", cleaned) # SKU/product code pattern (letters followed by numbers) | |
| cleaned = re.sub(r"\b[A-Za-z]{2,}[0-9]{2,}\b", "", cleaned) | |
| cleaned = re.sub(r"\b\d+\b", "", cleaned) # Remove numbers as tokens | |
| # Example keyword list | |
| keywords = ["blazer", "shirt", "trouser", "saree", "tie", "suit"] | |
| cleaned = emphasize_keywords(cleaned, keywords) | |
| words = cleaned.split() | |
| words = [word for word in words if word.lower() not in stop_words] | |
| return " ".join(words).strip() | |
| # Load model and tokenizer | |
| def load_model(model_name): | |
| if model_name not in model_cache: | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSeq2SeqLM.from_pretrained( | |
| model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 | |
| ) | |
| model.to("cuda" if torch.cuda.is_available() else "cpu") | |
| model_cache[model_name] = (tokenizer, model) | |
| # Warm up | |
| dummy_input = tokenizer("summarize: warmup", return_tensors="pt").input_ids.to(model.device) | |
| model.generate(dummy_input, max_length=10) | |
| return model_cache[model_name] | |
| # Main function triggered by Gradio | |
| # 👈 Required for ZeroGPU to trigger GPU spin-up | |
| def summarize_text(input_text, model_label, char_limit): | |
| if not input_text.strip(): | |
| return "Please enter some text." | |
| input_text = clean_text(input_text) | |
| model_name = model_choices[model_label] | |
| tokenizer, model = load_model(model_name) | |
| # Prefix for T5/FLAN-style models | |
| if "t5" in model_name.lower(): | |
| input_text = "summarize: " + input_text | |
| inputs = tokenizer(input_text, return_tensors="pt", truncation=True) | |
| input_ids = inputs["input_ids"].to(model.device) | |
| # Adjust the generation parameters | |
| summary_ids = model.generate( | |
| input_ids, | |
| max_length=30, # Keep output length short, around the original text's length | |
| min_length=15, # Ensure the summary is not too short | |
| do_sample=False, # Disable sampling to avoid introducing new words | |
| num_beams=5, # Beam search to find the most likely sequence of tokens | |
| early_stopping=True, # Stop once a reasonable summary is generated | |
| no_repeat_ngram_size=1 # Prevent repetition of n-grams (bigrams in this case) | |
| ) | |
| summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
| # Remove any non-alphanumeric characters except space | |
| summary = re.sub(r"[^A-Za-z0-9\s]", "", summary) | |
| # Strip unwanted trailing spaces and punctuation | |
| summary = summary.strip() # Remove leading and trailing spaces | |
| summary = re.sub(r'[^\w\s]$', '', summary) # Remove trailing punctuation | |
| return summary[:char_limit].strip() | |
| # Gradio UI | |
| iface = gr.Interface( | |
| fn=summarize_text, | |
| inputs=[ | |
| gr.Textbox(lines=6, label="Enter text to summarize"), | |
| gr.Dropdown(choices=list(model_choices.keys()), label="Choose summarization model", value="T5 Base (t5-base)"), | |
| gr.Slider(minimum=30, maximum=200, value=65, step=1, label="Max Character Limit") | |
| ], | |
| outputs=gr.Textbox(lines=3, label="Summary (truncated to character limit)"), | |
| title="🔥 Xindus Summarizer (GPU-Optimized)", | |
| description="Summarizes input using Hugging Face models with ZeroGPU. Now faster with CUDA, float16, and warm start!" | |
| ) | |
| iface.launch() | |