Spaces:
Sleeping
Sleeping
app.py
CHANGED
|
@@ -3,14 +3,13 @@ import re
|
|
| 3 |
import torch
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 5 |
from nltk.corpus import stopwords
|
| 6 |
-
from spaces import GPU
|
| 7 |
import nltk
|
| 8 |
|
| 9 |
-
# Download stopwords
|
| 10 |
nltk.download('stopwords')
|
| 11 |
stop_words = set(stopwords.words('english'))
|
| 12 |
|
| 13 |
-
#
|
| 14 |
model_choices = {
|
| 15 |
"DistilBART CNN (sshleifer/distilbart-cnn-12-6)": "sshleifer/distilbart-cnn-12-6",
|
| 16 |
"T5 Small (t5-small)": "t5-small",
|
|
@@ -21,12 +20,27 @@ model_choices = {
|
|
| 21 |
|
| 22 |
model_cache = {}
|
| 23 |
|
|
|
|
| 24 |
def clean_text(input_text):
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
words = cleaned_text.split()
|
| 27 |
words = [word for word in words if word.lower() not in stop_words]
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
|
|
|
| 30 |
def load_model(model_name):
|
| 31 |
if model_name not in model_cache:
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
@@ -35,16 +49,16 @@ def load_model(model_name):
|
|
| 35 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 36 |
)
|
| 37 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 38 |
-
model
|
| 39 |
-
model_cache[model_name] = (tokenizer, model)
|
| 40 |
|
| 41 |
-
# Warm
|
| 42 |
-
dummy_input = tokenizer("summarize:
|
| 43 |
model.generate(dummy_input, max_length=10)
|
| 44 |
|
|
|
|
| 45 |
return model_cache[model_name]
|
| 46 |
|
| 47 |
-
|
| 48 |
def summarize_text(input_text, model_label, char_limit):
|
| 49 |
if not input_text.strip():
|
| 50 |
return "Please enter some text."
|
|
@@ -62,8 +76,8 @@ def summarize_text(input_text, model_label, char_limit):
|
|
| 62 |
|
| 63 |
summary_ids = model.generate(
|
| 64 |
input_ids,
|
| 65 |
-
max_length=
|
| 66 |
-
min_length=5,
|
| 67 |
do_sample=False
|
| 68 |
)
|
| 69 |
|
|
@@ -75,12 +89,12 @@ iface = gr.Interface(
|
|
| 75 |
fn=summarize_text,
|
| 76 |
inputs=[
|
| 77 |
gr.Textbox(lines=6, label="Enter text to summarize"),
|
| 78 |
-
gr.Dropdown(choices=list(model_choices.keys()), label="Choose summarization model", value="
|
| 79 |
-
gr.Slider(minimum=
|
| 80 |
],
|
| 81 |
outputs=gr.Textbox(lines=3, label="Summary (truncated to character limit)"),
|
| 82 |
-
title="
|
| 83 |
-
description="Summarize
|
| 84 |
)
|
| 85 |
|
| 86 |
iface.launch()
|
|
|
|
| 3 |
import torch
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 5 |
from nltk.corpus import stopwords
|
|
|
|
| 6 |
import nltk
|
| 7 |
|
| 8 |
+
# Download NLTK stopwords
|
| 9 |
nltk.download('stopwords')
|
| 10 |
stop_words = set(stopwords.words('english'))
|
| 11 |
|
| 12 |
+
# Best lightweight summarization models
|
| 13 |
model_choices = {
|
| 14 |
"DistilBART CNN (sshleifer/distilbart-cnn-12-6)": "sshleifer/distilbart-cnn-12-6",
|
| 15 |
"T5 Small (t5-small)": "t5-small",
|
|
|
|
| 20 |
|
| 21 |
model_cache = {}
|
| 22 |
|
| 23 |
+
# Clean input text (remove stopwords and SKUs/product codes)
|
| 24 |
def clean_text(input_text):
|
| 25 |
+
# Remove simple SKU codes (e.g., ST1642, AB1234, etc.)
|
| 26 |
+
cleaned_text = re.sub(r'\b[A-Za-z]{2,}[0-9]{3,}\b', '', input_text) # Alphanumeric SKU
|
| 27 |
+
|
| 28 |
+
# Replace special characters with a space
|
| 29 |
+
cleaned_text = re.sub(r'[^A-Za-z0-9\s]', ' ', cleaned_text)
|
| 30 |
+
|
| 31 |
+
# Tokenize the input text and remove stop words
|
| 32 |
words = cleaned_text.split()
|
| 33 |
words = [word for word in words if word.lower() not in stop_words]
|
| 34 |
+
|
| 35 |
+
# Rebuild the cleaned text
|
| 36 |
+
cleaned_text = " ".join(words)
|
| 37 |
+
|
| 38 |
+
# Strip leading and trailing spaces
|
| 39 |
+
cleaned_text = cleaned_text.strip()
|
| 40 |
+
|
| 41 |
+
return cleaned_text
|
| 42 |
|
| 43 |
+
# Load model and tokenizer
|
| 44 |
def load_model(model_name):
|
| 45 |
if model_name not in model_cache:
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 49 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 50 |
)
|
| 51 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 52 |
+
model.to(device)
|
|
|
|
| 53 |
|
| 54 |
+
# Warm-up
|
| 55 |
+
dummy_input = tokenizer("summarize: warm up", return_tensors="pt").input_ids.to(device)
|
| 56 |
model.generate(dummy_input, max_length=10)
|
| 57 |
|
| 58 |
+
model_cache[model_name] = (tokenizer, model)
|
| 59 |
return model_cache[model_name]
|
| 60 |
|
| 61 |
+
# Summarize the text using a selected model
|
| 62 |
def summarize_text(input_text, model_label, char_limit):
|
| 63 |
if not input_text.strip():
|
| 64 |
return "Please enter some text."
|
|
|
|
| 76 |
|
| 77 |
summary_ids = model.generate(
|
| 78 |
input_ids,
|
| 79 |
+
max_length=30, # Ensure max_length is greater than min_length
|
| 80 |
+
min_length=5, # Ensure min_length is less than max_length
|
| 81 |
do_sample=False
|
| 82 |
)
|
| 83 |
|
|
|
|
| 89 |
fn=summarize_text,
|
| 90 |
inputs=[
|
| 91 |
gr.Textbox(lines=6, label="Enter text to summarize"),
|
| 92 |
+
gr.Dropdown(choices=list(model_choices.keys()), label="Choose summarization model", value="DistilBART CNN (sshleifer/distilbart-cnn-12-6)"),
|
| 93 |
+
gr.Slider(minimum=30, maximum=200, value=80, step=1, label="Max Character Limit")
|
| 94 |
],
|
| 95 |
outputs=gr.Textbox(lines=3, label="Summary (truncated to character limit)"),
|
| 96 |
+
title="🚀 Fast Lightweight Summarizer (GPU Optimized)",
|
| 97 |
+
description="Summarize text quickly using compact models ideal for low-latency and ZeroGPU Spaces."
|
| 98 |
)
|
| 99 |
|
| 100 |
iface.launch()
|