Spaces:
Sleeping
Sleeping
app.py
CHANGED
|
@@ -1,13 +1,16 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import re
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
from nltk.corpus import stopwords
|
| 5 |
-
|
| 6 |
-
# Download the NLTK stopwords (only the first time you run)
|
| 7 |
import nltk
|
|
|
|
|
|
|
| 8 |
nltk.download('stopwords')
|
|
|
|
| 9 |
|
| 10 |
-
# Model choices
|
| 11 |
model_choices = {
|
| 12 |
"Pegasus (google/pegasus-xsum)": "google/pegasus-xsum",
|
| 13 |
"BigBird-Pegasus (google/bigbird-pegasus-large-arxiv)": "google/bigbird-pegasus-large-arxiv",
|
|
@@ -33,66 +36,54 @@ model_choices = {
|
|
| 33 |
|
| 34 |
model_cache = {}
|
| 35 |
|
| 36 |
-
# Get NLTK stopwords (common stop words)
|
| 37 |
-
stop_words = set(stopwords.words('english'))
|
| 38 |
-
|
| 39 |
-
# Function to clean input text by removing unnecessary words like stop words
|
| 40 |
def clean_text(input_text):
|
| 41 |
-
# Replace special characters with a space
|
| 42 |
cleaned_text = re.sub(r'[^A-Za-z0-9\s]', ' ', input_text)
|
| 43 |
-
|
| 44 |
-
# Tokenize the input text and remove stop words
|
| 45 |
words = cleaned_text.split()
|
| 46 |
words = [word for word in words if word.lower() not in stop_words]
|
| 47 |
-
|
| 48 |
-
# Rebuild the cleaned text
|
| 49 |
-
cleaned_text = " ".join(words)
|
| 50 |
-
|
| 51 |
-
# Strip leading and trailing spaces
|
| 52 |
-
cleaned_text = cleaned_text.strip()
|
| 53 |
-
|
| 54 |
-
return cleaned_text
|
| 55 |
|
| 56 |
-
# Load model and tokenizer
|
| 57 |
def load_model(model_name):
|
| 58 |
if model_name not in model_cache:
|
| 59 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 60 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
model_cache[model_name] = (tokenizer, model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
return model_cache[model_name]
|
| 63 |
|
| 64 |
-
#
|
| 65 |
def summarize_text(input_text, model_label, char_limit):
|
| 66 |
if not input_text.strip():
|
| 67 |
return "Please enter some text."
|
| 68 |
|
| 69 |
-
# Clean the input text by removing special characters and stop words
|
| 70 |
input_text = clean_text(input_text)
|
| 71 |
-
|
| 72 |
model_name = model_choices[model_label]
|
| 73 |
tokenizer, model = load_model(model_name)
|
| 74 |
|
| 75 |
-
# Adjust the input format for T5 and FLAN models
|
| 76 |
if "t5" in model_name.lower() or "flan" in model_name.lower():
|
| 77 |
input_text = "summarize: " + input_text
|
| 78 |
|
|
|
|
| 79 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
|
|
|
|
| 80 |
|
| 81 |
summary_ids = model.generate(
|
| 82 |
-
|
| 83 |
-
max_length=
|
| 84 |
min_length=5,
|
| 85 |
do_sample=False
|
| 86 |
)
|
| 87 |
|
| 88 |
-
# Decode the summary while skipping special tokens and cleaning unwanted characters
|
| 89 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 90 |
-
|
| 91 |
-
# Remove unwanted characters like pipes or any unwanted symbols
|
| 92 |
-
summary = summary.replace("|", "") # Remove pipes
|
| 93 |
-
summary = summary.strip() # Remove leading/trailing whitespace
|
| 94 |
-
|
| 95 |
-
return summary[:char_limit] # Enforce character limit
|
| 96 |
|
| 97 |
# Gradio UI
|
| 98 |
iface = gr.Interface(
|
|
@@ -100,11 +91,11 @@ iface = gr.Interface(
|
|
| 100 |
inputs=[
|
| 101 |
gr.Textbox(lines=6, label="Enter text to summarize"),
|
| 102 |
gr.Dropdown(choices=list(model_choices.keys()), label="Choose summarization model", value="Pegasus (google/pegasus-xsum)"),
|
| 103 |
-
gr.Slider(minimum=30, maximum=200, value=
|
| 104 |
],
|
| 105 |
outputs=gr.Textbox(lines=3, label="Summary (truncated to character limit)"),
|
| 106 |
-
title="Multi-Model Text Summarizer",
|
| 107 |
-
description="Summarize
|
| 108 |
)
|
| 109 |
|
| 110 |
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import re
|
| 3 |
+
import torch
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 5 |
from nltk.corpus import stopwords
|
| 6 |
+
from spaces import GPU
|
|
|
|
| 7 |
import nltk
|
| 8 |
+
|
| 9 |
+
# Download stopwords if not already
|
| 10 |
nltk.download('stopwords')
|
| 11 |
+
stop_words = set(stopwords.words('english'))
|
| 12 |
|
| 13 |
+
# Model choices
|
| 14 |
model_choices = {
|
| 15 |
"Pegasus (google/pegasus-xsum)": "google/pegasus-xsum",
|
| 16 |
"BigBird-Pegasus (google/bigbird-pegasus-large-arxiv)": "google/bigbird-pegasus-large-arxiv",
|
|
|
|
| 36 |
|
| 37 |
model_cache = {}
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def clean_text(input_text):
|
|
|
|
| 40 |
cleaned_text = re.sub(r'[^A-Za-z0-9\s]', ' ', input_text)
|
|
|
|
|
|
|
| 41 |
words = cleaned_text.split()
|
| 42 |
words = [word for word in words if word.lower() not in stop_words]
|
| 43 |
+
return " ".join(words).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
|
|
|
| 45 |
def load_model(model_name):
|
| 46 |
if model_name not in model_cache:
|
| 47 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 48 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 49 |
+
model_name,
|
| 50 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 51 |
+
)
|
| 52 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 53 |
+
model = model.to(device)
|
| 54 |
model_cache[model_name] = (tokenizer, model)
|
| 55 |
+
|
| 56 |
+
# Warm up with dummy input
|
| 57 |
+
dummy_input = tokenizer("summarize: hello world", return_tensors="pt").input_ids.to(device)
|
| 58 |
+
model.generate(dummy_input, max_length=10)
|
| 59 |
+
|
| 60 |
return model_cache[model_name]
|
| 61 |
|
| 62 |
+
@GPU # 👈 Required for ZeroGPU to allocate GPU when this is called
|
| 63 |
def summarize_text(input_text, model_label, char_limit):
|
| 64 |
if not input_text.strip():
|
| 65 |
return "Please enter some text."
|
| 66 |
|
|
|
|
| 67 |
input_text = clean_text(input_text)
|
|
|
|
| 68 |
model_name = model_choices[model_label]
|
| 69 |
tokenizer, model = load_model(model_name)
|
| 70 |
|
|
|
|
| 71 |
if "t5" in model_name.lower() or "flan" in model_name.lower():
|
| 72 |
input_text = "summarize: " + input_text
|
| 73 |
|
| 74 |
+
device = model.device
|
| 75 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
|
| 76 |
+
input_ids = inputs["input_ids"].to(device)
|
| 77 |
|
| 78 |
summary_ids = model.generate(
|
| 79 |
+
input_ids,
|
| 80 |
+
max_length=30,
|
| 81 |
min_length=5,
|
| 82 |
do_sample=False
|
| 83 |
)
|
| 84 |
|
|
|
|
| 85 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 86 |
+
return summary[:char_limit].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# Gradio UI
|
| 89 |
iface = gr.Interface(
|
|
|
|
| 91 |
inputs=[
|
| 92 |
gr.Textbox(lines=6, label="Enter text to summarize"),
|
| 93 |
gr.Dropdown(choices=list(model_choices.keys()), label="Choose summarization model", value="Pegasus (google/pegasus-xsum)"),
|
| 94 |
+
gr.Slider(minimum=30, maximum=200, value=80, step=1, label="Max Character Limit")
|
| 95 |
],
|
| 96 |
outputs=gr.Textbox(lines=3, label="Summary (truncated to character limit)"),
|
| 97 |
+
title="Multi-Model Text Summarizer (GPU Ready)",
|
| 98 |
+
description="Summarize long or short texts using state-of-the-art Hugging Face models with GPU acceleration (ZeroGPU-compatible)."
|
| 99 |
)
|
| 100 |
|
| 101 |
iface.launch()
|