File size: 3,009 Bytes
361de4d
 
bf736ad
 
361de4d
 
 
 
bf736ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361de4d
 
bf736ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae43f82
 
 
bf736ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, util
import numpy as np

# Load SBERT model
model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")

# βœ… Load dataset with passages
dataset = load_dataset("sentence-transformers/msmarco", "v1.1", split="train[:10000]")
passages = dataset["passage"]

# Encode passages once for efficiency
passage_embeddings = model.encode(passages, convert_to_tensor=True)

# ---------- Evaluation Metrics ----------
def precision_at_k(relevant, retrieved, k):
    return len(set(relevant) & set(retrieved[:k])) / k

def recall_at_k(relevant, retrieved, k):
    return len(set(relevant) & set(retrieved[:k])) / len(relevant) if relevant else 0

def f1_at_k(relevant, retrieved, k):
    p = precision_at_k(relevant, retrieved, k)
    r = recall_at_k(relevant, retrieved, k)
    return 2*p*r / (p+r) if (p+r) > 0 else 0

def mrr(relevant, retrieved):
    for i, r in enumerate(retrieved):
        if r in relevant:
            return 1 / (i+1)
    return 0

def ndcg_at_k(relevant, retrieved, k):
    dcg = 0
    for i, r in enumerate(retrieved[:k]):
        if r in relevant:
            dcg += 1 / np.log2(i+2)
    ideal_dcg = sum(1 / np.log2(i+2) for i in range(min(len(relevant), k)))
    return dcg / ideal_dcg if ideal_dcg > 0 else 0

# ---------- Search ----------
def semantic_search(query, top_k=10):
    query_embedding = model.encode(query, convert_to_tensor=True)
    scores = util.cos_sim(query_embedding, passage_embeddings)[0]
    top_results = scores.topk(k=top_k)
    retrieved = [int(idx) for idx in top_results[1]]
    results = [(passages[idx], float(scores[idx])) for idx in retrieved]
    return results, retrieved

# ---------- Interface Logic ----------
def search_and_evaluate(query):
    results, retrieved = semantic_search(query, top_k=10)

    # Example: assume top-3 are relevant (for demo purposes)
    relevant = set(retrieved[:3])

    metrics = {
        "Precision@10": precision_at_k(relevant, retrieved, 10),
        "Recall@10": recall_at_k(relevant, retrieved, 10),
        "F1@10": f1_at_k(relevant, retrieved, 10),
        "MRR": mrr(relevant, retrieved),
        "nDCG@10": ndcg_at_k(relevant, retrieved, 10),
    }

    output_text = "### Search Results:\n"
    for i, (text, score) in enumerate(results, 1):
        output_text += f"{i}. {text} (score: {score:.4f})\n\n"

    output_text += "\n### Evaluation Metrics:\n"
    for k, v in metrics.items():
        output_text += f"{k}: {v:.4f}\n"

    return output_text

# ---------- Gradio App ----------
iface = gr.Interface(
    fn=search_and_evaluate,
    inputs=gr.Textbox(label="Enter your query"),
    outputs=gr.Textbox(label="Results + Metrics"),
    title="SBERT Semantic Search + Evaluation Metrics",
    description="Semantic search on MS MARCO (10,000 sample passages) using all-mpnet-base-v2. Includes Precision@10, Recall@10, F1, MRR, nDCG@10."
)

if __name__ == "__main__":
    iface.launch()