File size: 3,792 Bytes
361de4d
 
bf736ad
 
361de4d
c882be2
361de4d
 
c882be2
 
bf736ad
 
 
c882be2
bf736ad
 
c882be2
 
 
 
 
 
 
 
 
 
 
bf736ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c882be2
 
 
bf736ad
c882be2
bf736ad
c882be2
bf736ad
c882be2
 
 
 
 
 
bf736ad
 
c882be2
 
 
 
 
361de4d
 
bf736ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c882be2
ae43f82
 
 
bf736ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import gradio as gr
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, util
import numpy as np

# ---------- Load model ----------
model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")

# ---------- Load MS MARCO dataset ----------
# 10k sample passages
dataset = load_dataset("sentence-transformers/msmarco", "v1.1", split="train[:10000]")
passages = dataset["passage"]

# Precompute embeddings
passage_embeddings = model.encode(passages, convert_to_tensor=True)

# Map index -> passage
id_to_passage = {i: passages[i] for i in range(len(passages))}

# ---------- Load queries and qrels ----------
queries_dataset = load_dataset("sentence-transformers/msmarco", "v1.1", split="validation[:500]")  # small sample
qrels_dataset = load_dataset("ms_marco", "v1.1", split="validation[:500]")  # contains relevant passage ids

query_id_to_text = {i: q["query"] for i, q in enumerate(queries_dataset)}
query_id_to_relevant = {i: set(q["positive_passages"]) for i, q in enumerate(qrels_dataset)}

# ---------- Evaluation metrics ----------
def precision_at_k(relevant, retrieved, k):
    return len(set(relevant) & set(retrieved[:k])) / k

def recall_at_k(relevant, retrieved, k):
    return len(set(relevant) & set(retrieved[:k])) / len(relevant) if relevant else 0

def f1_at_k(relevant, retrieved, k):
    p = precision_at_k(relevant, retrieved, k)
    r = recall_at_k(relevant, retrieved, k)
    return 2*p*r / (p+r) if (p+r) > 0 else 0

def mrr(relevant, retrieved):
    for i, r in enumerate(retrieved):
        if r in relevant:
            return 1 / (i+1)
    return 0

def ndcg_at_k(relevant, retrieved, k):
    dcg = 0
    for i, r in enumerate(retrieved[:k]):
        if r in relevant:
            dcg += 1 / np.log2(i+2)
    ideal_dcg = sum(1 / np.log2(i+2) for i in range(min(len(relevant), k)))
    return dcg / ideal_dcg if ideal_dcg > 0 else 0

# ---------- Search ----------
def semantic_search(query, top_k=10):
    query_embedding = model.encode(query, convert_to_tensor=True)
    scores = util.cos_sim(query_embedding, passage_embeddings)[0]
    top_results = scores.topk(k=top_k)
    retrieved_indices = [int(idx) for idx in top_results[1]]
    results = [(id_to_passage[idx], float(scores[idx])) for idx in retrieved_indices]
    return results, retrieved_indices

# ---------- Gradio interface ----------
def search_and_evaluate(query):
    results, retrieved_indices = semantic_search(query, top_k=10)

    # Match against actual relevant passages if available
    relevant_indices = set()
    for i, q in query_id_to_text.items():
        if q.strip().lower() == query.strip().lower():
            relevant_indices = query_id_to_relevant[i]
            break

    metrics = {
        "Precision@10": precision_at_k(relevant_indices, retrieved_indices, 10),
        "Recall@10": recall_at_k(relevant_indices, retrieved_indices, 10),
        "F1@10": f1_at_k(relevant_indices, retrieved_indices, 10),
        "MRR": mrr(relevant_indices, retrieved_indices),
        "nDCG@10": ndcg_at_k(relevant_indices, retrieved_indices, 10)
    }

    output_text = "### Search Results:\n"
    for i, (text, score) in enumerate(results, 1):
        output_text += f"{i}. {text} (score: {score:.4f})\n\n"

    output_text += "\n### Evaluation Metrics:\n"
    for k, v in metrics.items():
        output_text += f"{k}: {v:.4f}\n"

    return output_text

iface = gr.Interface(
    fn=search_and_evaluate,
    inputs=gr.Textbox(label="Enter your query"),
    outputs=gr.Textbox(label="Results + Metrics"),
    title="SBERT Semantic Search + Evaluation Metrics",
    description="Semantic search on MS MARCO (10,000 sample passages) using all-mpnet-base-v2 with true evaluation metrics."
)

if __name__ == "__main__":
    iface.launch()