Spaces:
Runtime error
Runtime error
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import contextlib | |
| import shutil | |
| import subprocess | |
| import sys | |
| from pathlib import Path | |
| from types import SimpleNamespace | |
| from typing import Dict, List, Union | |
| from ultralytics.utils import ( | |
| ASSETS, | |
| DEFAULT_CFG, | |
| DEFAULT_CFG_DICT, | |
| DEFAULT_CFG_PATH, | |
| LOGGER, | |
| RANK, | |
| ROOT, | |
| RUNS_DIR, | |
| SETTINGS, | |
| SETTINGS_YAML, | |
| TESTS_RUNNING, | |
| IterableSimpleNamespace, | |
| __version__, | |
| checks, | |
| colorstr, | |
| deprecation_warn, | |
| yaml_load, | |
| yaml_print, | |
| ) | |
| # Define valid tasks and modes | |
| MODES = {"train", "val", "predict", "export", "track", "benchmark"} | |
| TASKS = {"detect", "segment", "classify", "pose", "obb"} | |
| TASK2DATA = { | |
| "detect": "coco8.yaml", | |
| "segment": "coco8-seg.yaml", | |
| "classify": "imagenet10", | |
| "pose": "coco8-pose.yaml", | |
| "obb": "dota8.yaml", | |
| } | |
| TASK2MODEL = { | |
| "detect": "yolov8n.pt", | |
| "segment": "yolov8n-seg.pt", | |
| "classify": "yolov8n-cls.pt", | |
| "pose": "yolov8n-pose.pt", | |
| "obb": "yolov8n-obb.pt", | |
| } | |
| TASK2METRIC = { | |
| "detect": "metrics/mAP50-95(B)", | |
| "segment": "metrics/mAP50-95(M)", | |
| "classify": "metrics/accuracy_top1", | |
| "pose": "metrics/mAP50-95(P)", | |
| "obb": "metrics/mAP50-95(B)", | |
| } | |
| MODELS = {TASK2MODEL[task] for task in TASKS} | |
| ARGV = sys.argv or ["", ""] # sometimes sys.argv = [] | |
| CLI_HELP_MSG = f""" | |
| Arguments received: {str(['yolo'] + ARGV[1:])}. Ultralytics 'yolo' commands use the following syntax: | |
| yolo TASK MODE ARGS | |
| Where TASK (optional) is one of {TASKS} | |
| MODE (required) is one of {MODES} | |
| ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. | |
| See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg' | |
| 1. Train a detection model for 10 epochs with an initial learning_rate of 0.01 | |
| yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 | |
| 2. Predict a YouTube video using a pretrained segmentation model at image size 320: | |
| yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 | |
| 3. Val a pretrained detection model at batch-size 1 and image size 640: | |
| yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640 | |
| 4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) | |
| yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 | |
| 6. Explore your datasets using semantic search and SQL with a simple GUI powered by Ultralytics Explorer API | |
| yolo explorer | |
| 5. Run special commands: | |
| yolo help | |
| yolo checks | |
| yolo version | |
| yolo settings | |
| yolo copy-cfg | |
| yolo cfg | |
| Docs: https://docs.ultralytics.com | |
| Community: https://community.ultralytics.com | |
| GitHub: https://github.com/ultralytics/ultralytics | |
| """ | |
| # Define keys for arg type checks | |
| CFG_FLOAT_KEYS = { # integer or float arguments, i.e. x=2 and x=2.0 | |
| "warmup_epochs", | |
| "box", | |
| "cls", | |
| "dfl", | |
| "degrees", | |
| "shear", | |
| "time", | |
| "workspace", | |
| "batch", | |
| } | |
| CFG_FRACTION_KEYS = { # fractional float arguments with 0.0<=values<=1.0 | |
| "dropout", | |
| "lr0", | |
| "lrf", | |
| "momentum", | |
| "weight_decay", | |
| "warmup_momentum", | |
| "warmup_bias_lr", | |
| "label_smoothing", | |
| "hsv_h", | |
| "hsv_s", | |
| "hsv_v", | |
| "translate", | |
| "scale", | |
| "perspective", | |
| "flipud", | |
| "fliplr", | |
| "bgr", | |
| "mosaic", | |
| "mixup", | |
| "copy_paste", | |
| "conf", | |
| "iou", | |
| "fraction", | |
| } | |
| CFG_INT_KEYS = { # integer-only arguments | |
| "epochs", | |
| "patience", | |
| "workers", | |
| "seed", | |
| "close_mosaic", | |
| "mask_ratio", | |
| "max_det", | |
| "vid_stride", | |
| "line_width", | |
| "nbs", | |
| "save_period", | |
| } | |
| CFG_BOOL_KEYS = { # boolean-only arguments | |
| "save", | |
| "exist_ok", | |
| "verbose", | |
| "deterministic", | |
| "single_cls", | |
| "rect", | |
| "cos_lr", | |
| "overlap_mask", | |
| "val", | |
| "save_json", | |
| "save_hybrid", | |
| "half", | |
| "dnn", | |
| "plots", | |
| "show", | |
| "save_txt", | |
| "save_conf", | |
| "save_crop", | |
| "save_frames", | |
| "show_labels", | |
| "show_conf", | |
| "visualize", | |
| "augment", | |
| "agnostic_nms", | |
| "retina_masks", | |
| "show_boxes", | |
| "keras", | |
| "optimize", | |
| "int8", | |
| "dynamic", | |
| "simplify", | |
| "nms", | |
| "profile", | |
| "multi_scale", | |
| } | |
| def cfg2dict(cfg): | |
| """ | |
| Convert a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object. | |
| Args: | |
| cfg (str | Path | dict | SimpleNamespace): Configuration object to be converted to a dictionary. | |
| Returns: | |
| cfg (dict): Configuration object in dictionary format. | |
| """ | |
| if isinstance(cfg, (str, Path)): | |
| cfg = yaml_load(cfg) # load dict | |
| elif isinstance(cfg, SimpleNamespace): | |
| cfg = vars(cfg) # convert to dict | |
| return cfg | |
| def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None): | |
| """ | |
| Load and merge configuration data from a file or dictionary. | |
| Args: | |
| cfg (str | Path | Dict | SimpleNamespace): Configuration data. | |
| overrides (str | Dict | optional): Overrides in the form of a file name or a dictionary. Default is None. | |
| Returns: | |
| (SimpleNamespace): Training arguments namespace. | |
| """ | |
| cfg = cfg2dict(cfg) | |
| # Merge overrides | |
| if overrides: | |
| overrides = cfg2dict(overrides) | |
| if "save_dir" not in cfg: | |
| overrides.pop("save_dir", None) # special override keys to ignore | |
| check_dict_alignment(cfg, overrides) | |
| cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides) | |
| # Special handling for numeric project/name | |
| for k in "project", "name": | |
| if k in cfg and isinstance(cfg[k], (int, float)): | |
| cfg[k] = str(cfg[k]) | |
| if cfg.get("name") == "model": # assign model to 'name' arg | |
| cfg["name"] = cfg.get("model", "").split(".")[0] | |
| LOGGER.warning(f"WARNING ⚠️ 'name=model' automatically updated to 'name={cfg['name']}'.") | |
| # Type and Value checks | |
| check_cfg(cfg) | |
| # Return instance | |
| return IterableSimpleNamespace(**cfg) | |
| def check_cfg(cfg, hard=True): | |
| """Check Ultralytics configuration argument types and values.""" | |
| for k, v in cfg.items(): | |
| if v is not None: # None values may be from optional args | |
| if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)): | |
| if hard: | |
| raise TypeError( | |
| f"'{k}={v}' is of invalid type {type(v).__name__}. " | |
| f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')" | |
| ) | |
| cfg[k] = float(v) | |
| elif k in CFG_FRACTION_KEYS: | |
| if not isinstance(v, (int, float)): | |
| if hard: | |
| raise TypeError( | |
| f"'{k}={v}' is of invalid type {type(v).__name__}. " | |
| f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')" | |
| ) | |
| cfg[k] = v = float(v) | |
| if not (0.0 <= v <= 1.0): | |
| raise ValueError(f"'{k}={v}' is an invalid value. " f"Valid '{k}' values are between 0.0 and 1.0.") | |
| elif k in CFG_INT_KEYS and not isinstance(v, int): | |
| if hard: | |
| raise TypeError( | |
| f"'{k}={v}' is of invalid type {type(v).__name__}. " f"'{k}' must be an int (i.e. '{k}=8')" | |
| ) | |
| cfg[k] = int(v) | |
| elif k in CFG_BOOL_KEYS and not isinstance(v, bool): | |
| if hard: | |
| raise TypeError( | |
| f"'{k}={v}' is of invalid type {type(v).__name__}. " | |
| f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')" | |
| ) | |
| cfg[k] = bool(v) | |
| def get_save_dir(args, name=None): | |
| """Return save_dir as created from train/val/predict arguments.""" | |
| if getattr(args, "save_dir", None): | |
| save_dir = args.save_dir | |
| else: | |
| from ultralytics.utils.files import increment_path | |
| project = args.project or (ROOT.parent / "tests/tmp/runs" if TESTS_RUNNING else RUNS_DIR) / args.task | |
| name = name or args.name or f"{args.mode}" | |
| save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in {-1, 0} else True) | |
| return Path(save_dir) | |
| def _handle_deprecation(custom): | |
| """Hardcoded function to handle deprecated config keys.""" | |
| for key in custom.copy().keys(): | |
| if key == "boxes": | |
| deprecation_warn(key, "show_boxes") | |
| custom["show_boxes"] = custom.pop("boxes") | |
| if key == "hide_labels": | |
| deprecation_warn(key, "show_labels") | |
| custom["show_labels"] = custom.pop("hide_labels") == "False" | |
| if key == "hide_conf": | |
| deprecation_warn(key, "show_conf") | |
| custom["show_conf"] = custom.pop("hide_conf") == "False" | |
| if key == "line_thickness": | |
| deprecation_warn(key, "line_width") | |
| custom["line_width"] = custom.pop("line_thickness") | |
| return custom | |
| def check_dict_alignment(base: Dict, custom: Dict, e=None): | |
| """ | |
| This function checks for any mismatched keys between a custom configuration list and a base configuration list. If | |
| any mismatched keys are found, the function prints out similar keys from the base list and exits the program. | |
| Args: | |
| custom (dict): a dictionary of custom configuration options | |
| base (dict): a dictionary of base configuration options | |
| e (Error, optional): An optional error that is passed by the calling function. | |
| """ | |
| custom = _handle_deprecation(custom) | |
| base_keys, custom_keys = (set(x.keys()) for x in (base, custom)) | |
| mismatched = [k for k in custom_keys if k not in base_keys] | |
| if mismatched: | |
| from difflib import get_close_matches | |
| string = "" | |
| for x in mismatched: | |
| matches = get_close_matches(x, base_keys) # key list | |
| matches = [f"{k}={base[k]}" if base.get(k) is not None else k for k in matches] | |
| match_str = f"Similar arguments are i.e. {matches}." if matches else "" | |
| string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n" | |
| raise SyntaxError(string + CLI_HELP_MSG) from e | |
| def merge_equals_args(args: List[str]) -> List[str]: | |
| """ | |
| Merges arguments around isolated '=' args in a list of strings. The function considers cases where the first | |
| argument ends with '=' or the second starts with '=', as well as when the middle one is an equals sign. | |
| Args: | |
| args (List[str]): A list of strings where each element is an argument. | |
| Returns: | |
| (List[str]): A list of strings where the arguments around isolated '=' are merged. | |
| """ | |
| new_args = [] | |
| for i, arg in enumerate(args): | |
| if arg == "=" and 0 < i < len(args) - 1: # merge ['arg', '=', 'val'] | |
| new_args[-1] += f"={args[i + 1]}" | |
| del args[i + 1] | |
| elif arg.endswith("=") and i < len(args) - 1 and "=" not in args[i + 1]: # merge ['arg=', 'val'] | |
| new_args.append(f"{arg}{args[i + 1]}") | |
| del args[i + 1] | |
| elif arg.startswith("=") and i > 0: # merge ['arg', '=val'] | |
| new_args[-1] += arg | |
| else: | |
| new_args.append(arg) | |
| return new_args | |
| def handle_yolo_hub(args: List[str]) -> None: | |
| """ | |
| Handle Ultralytics HUB command-line interface (CLI) commands. | |
| This function processes Ultralytics HUB CLI commands such as login and logout. | |
| It should be called when executing a script with arguments related to HUB authentication. | |
| Args: | |
| args (List[str]): A list of command line arguments | |
| Example: | |
| ```bash | |
| python my_script.py hub login your_api_key | |
| ``` | |
| """ | |
| from ultralytics import hub | |
| if args[0] == "login": | |
| key = args[1] if len(args) > 1 else "" | |
| # Log in to Ultralytics HUB using the provided API key | |
| hub.login(key) | |
| elif args[0] == "logout": | |
| # Log out from Ultralytics HUB | |
| hub.logout() | |
| def handle_yolo_settings(args: List[str]) -> None: | |
| """ | |
| Handle YOLO settings command-line interface (CLI) commands. | |
| This function processes YOLO settings CLI commands such as reset. | |
| It should be called when executing a script with arguments related to YOLO settings management. | |
| Args: | |
| args (List[str]): A list of command line arguments for YOLO settings management. | |
| Example: | |
| ```bash | |
| python my_script.py yolo settings reset | |
| ``` | |
| """ | |
| url = "https://docs.ultralytics.com/quickstart/#ultralytics-settings" # help URL | |
| try: | |
| if any(args): | |
| if args[0] == "reset": | |
| SETTINGS_YAML.unlink() # delete the settings file | |
| SETTINGS.reset() # create new settings | |
| LOGGER.info("Settings reset successfully") # inform the user that settings have been reset | |
| else: # save a new setting | |
| new = dict(parse_key_value_pair(a) for a in args) | |
| check_dict_alignment(SETTINGS, new) | |
| SETTINGS.update(new) | |
| LOGGER.info(f"💡 Learn about settings at {url}") | |
| yaml_print(SETTINGS_YAML) # print the current settings | |
| except Exception as e: | |
| LOGGER.warning(f"WARNING ⚠️ settings error: '{e}'. Please see {url} for help.") | |
| def handle_explorer(): | |
| """Open the Ultralytics Explorer GUI.""" | |
| checks.check_requirements("streamlit") | |
| LOGGER.info("💡 Loading Explorer dashboard...") | |
| subprocess.run(["streamlit", "run", ROOT / "data/explorer/gui/dash.py", "--server.maxMessageSize", "2048"]) | |
| def parse_key_value_pair(pair): | |
| """Parse one 'key=value' pair and return key and value.""" | |
| k, v = pair.split("=", 1) # split on first '=' sign | |
| k, v = k.strip(), v.strip() # remove spaces | |
| assert v, f"missing '{k}' value" | |
| return k, smart_value(v) | |
| def smart_value(v): | |
| """Convert a string to an underlying type such as int, float, bool, etc.""" | |
| v_lower = v.lower() | |
| if v_lower == "none": | |
| return None | |
| elif v_lower == "true": | |
| return True | |
| elif v_lower == "false": | |
| return False | |
| else: | |
| with contextlib.suppress(Exception): | |
| return eval(v) | |
| return v | |
| def entrypoint(debug=""): | |
| """ | |
| This function is the ultralytics package entrypoint, it's responsible for parsing the command line arguments passed | |
| to the package. | |
| This function allows for: | |
| - passing mandatory YOLO args as a list of strings | |
| - specifying the task to be performed, either 'detect', 'segment' or 'classify' | |
| - specifying the mode, either 'train', 'val', 'test', or 'predict' | |
| - running special modes like 'checks' | |
| - passing overrides to the package's configuration | |
| It uses the package's default cfg and initializes it using the passed overrides. | |
| Then it calls the CLI function with the composed cfg | |
| """ | |
| args = (debug.split(" ") if debug else ARGV)[1:] | |
| if not args: # no arguments passed | |
| LOGGER.info(CLI_HELP_MSG) | |
| return | |
| special = { | |
| "help": lambda: LOGGER.info(CLI_HELP_MSG), | |
| "checks": checks.collect_system_info, | |
| "version": lambda: LOGGER.info(__version__), | |
| "settings": lambda: handle_yolo_settings(args[1:]), | |
| "cfg": lambda: yaml_print(DEFAULT_CFG_PATH), | |
| "hub": lambda: handle_yolo_hub(args[1:]), | |
| "login": lambda: handle_yolo_hub(args), | |
| "copy-cfg": copy_default_cfg, | |
| "explorer": lambda: handle_explorer(), | |
| } | |
| full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in TASKS}, **{k: None for k in MODES}, **special} | |
| # Define common misuses of special commands, i.e. -h, -help, --help | |
| special.update({k[0]: v for k, v in special.items()}) # singular | |
| special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith("s")}) # singular | |
| special = {**special, **{f"-{k}": v for k, v in special.items()}, **{f"--{k}": v for k, v in special.items()}} | |
| overrides = {} # basic overrides, i.e. imgsz=320 | |
| for a in merge_equals_args(args): # merge spaces around '=' sign | |
| if a.startswith("--"): | |
| LOGGER.warning(f"WARNING ⚠️ argument '{a}' does not require leading dashes '--', updating to '{a[2:]}'.") | |
| a = a[2:] | |
| if a.endswith(","): | |
| LOGGER.warning(f"WARNING ⚠️ argument '{a}' does not require trailing comma ',', updating to '{a[:-1]}'.") | |
| a = a[:-1] | |
| if "=" in a: | |
| try: | |
| k, v = parse_key_value_pair(a) | |
| if k == "cfg" and v is not None: # custom.yaml passed | |
| LOGGER.info(f"Overriding {DEFAULT_CFG_PATH} with {v}") | |
| overrides = {k: val for k, val in yaml_load(checks.check_yaml(v)).items() if k != "cfg"} | |
| else: | |
| overrides[k] = v | |
| except (NameError, SyntaxError, ValueError, AssertionError) as e: | |
| check_dict_alignment(full_args_dict, {a: ""}, e) | |
| elif a in TASKS: | |
| overrides["task"] = a | |
| elif a in MODES: | |
| overrides["mode"] = a | |
| elif a.lower() in special: | |
| special[a.lower()]() | |
| return | |
| elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool): | |
| overrides[a] = True # auto-True for default bool args, i.e. 'yolo show' sets show=True | |
| elif a in DEFAULT_CFG_DICT: | |
| raise SyntaxError( | |
| f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign " | |
| f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}" | |
| ) | |
| else: | |
| check_dict_alignment(full_args_dict, {a: ""}) | |
| # Check keys | |
| check_dict_alignment(full_args_dict, overrides) | |
| # Mode | |
| mode = overrides.get("mode") | |
| if mode is None: | |
| mode = DEFAULT_CFG.mode or "predict" | |
| LOGGER.warning(f"WARNING ⚠️ 'mode' argument is missing. Valid modes are {MODES}. Using default 'mode={mode}'.") | |
| elif mode not in MODES: | |
| raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {MODES}.\n{CLI_HELP_MSG}") | |
| # Task | |
| task = overrides.pop("task", None) | |
| if task: | |
| if task not in TASKS: | |
| raise ValueError(f"Invalid 'task={task}'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}") | |
| if "model" not in overrides: | |
| overrides["model"] = TASK2MODEL[task] | |
| # Model | |
| model = overrides.pop("model", DEFAULT_CFG.model) | |
| if model is None: | |
| model = "yolov8n.pt" | |
| LOGGER.warning(f"WARNING ⚠️ 'model' argument is missing. Using default 'model={model}'.") | |
| overrides["model"] = model | |
| stem = Path(model).stem.lower() | |
| if "rtdetr" in stem: # guess architecture | |
| from ultralytics import RTDETR | |
| model = RTDETR(model) # no task argument | |
| elif "fastsam" in stem: | |
| from ultralytics import FastSAM | |
| model = FastSAM(model) | |
| elif "sam" in stem: | |
| from ultralytics import SAM | |
| model = SAM(model) | |
| else: | |
| from ultralytics import YOLO | |
| model = YOLO(model, task=task) | |
| if isinstance(overrides.get("pretrained"), str): | |
| model.load(overrides["pretrained"]) | |
| # Task Update | |
| if task != model.task: | |
| if task: | |
| LOGGER.warning( | |
| f"WARNING ⚠️ conflicting 'task={task}' passed with 'task={model.task}' model. " | |
| f"Ignoring 'task={task}' and updating to 'task={model.task}' to match model." | |
| ) | |
| task = model.task | |
| # Mode | |
| if mode in {"predict", "track"} and "source" not in overrides: | |
| overrides["source"] = DEFAULT_CFG.source or ASSETS | |
| LOGGER.warning(f"WARNING ⚠️ 'source' argument is missing. Using default 'source={overrides['source']}'.") | |
| elif mode in {"train", "val"}: | |
| if "data" not in overrides and "resume" not in overrides: | |
| overrides["data"] = DEFAULT_CFG.data or TASK2DATA.get(task or DEFAULT_CFG.task, DEFAULT_CFG.data) | |
| LOGGER.warning(f"WARNING ⚠️ 'data' argument is missing. Using default 'data={overrides['data']}'.") | |
| elif mode == "export": | |
| if "format" not in overrides: | |
| overrides["format"] = DEFAULT_CFG.format or "torchscript" | |
| LOGGER.warning(f"WARNING ⚠️ 'format' argument is missing. Using default 'format={overrides['format']}'.") | |
| # Run command in python | |
| getattr(model, mode)(**overrides) # default args from model | |
| # Show help | |
| LOGGER.info(f"💡 Learn more at https://docs.ultralytics.com/modes/{mode}") | |
| # Special modes -------------------------------------------------------------------------------------------------------- | |
| def copy_default_cfg(): | |
| """Copy and create a new default configuration file with '_copy' appended to its name.""" | |
| new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml") | |
| shutil.copy2(DEFAULT_CFG_PATH, new_file) | |
| LOGGER.info( | |
| f"{DEFAULT_CFG_PATH} copied to {new_file}\n" | |
| f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8" | |
| ) | |
| if __name__ == "__main__": | |
| # Example: entrypoint(debug='yolo predict model=yolov8n.pt') | |
| entrypoint(debug="") | |